torch.sparse_bsr_tensor¶
- torch.sparse_bsr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) Tensor ¶
Constructs a sparse tensor in BSR (Block Compressed Sparse Row)) with specified 2-dimensional blocks at the given
crow_indices
andcol_indices
. Sparse matrix multiplication operations in BSR format are typically faster than that for sparse tensors in COO format. Make you have a look at the note on the data type of the indices.- Parameters:
crow_indices (array_like) – (B+1)-dimensional array of size
(*batchsize, nrowblocks + 1)
. The last element of each batch is the number of non-zeros. This tensor encodes the block index in values and col_indices depending on where the given row block starts. Each successive number in the tensor subtracted by the number before it denotes the number of blocks in a given row.col_indices (array_like) – Column block co-ordinates of each block in values. (B+1)-dimensional tensor with the same length as values.
values (array_list) – Initial values for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types that represents a (1 + 2 + K)-dimensonal tensor whereK
is the number of dense dimensions.size (list, tuple,
torch.Size
, optional) – Size of the sparse tensor:(*batchsize, nrows * blocksize[0], ncols * blocksize[1], *densesize)
whereblocksize == values.shape[1:3]
. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero blocks.
- Keyword Arguments:
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: if None, infers data type fromvalues
.device (
torch.device
, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Example::
>>> crow_indices = [0, 1, 2] >>> col_indices = [0, 1] >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> torch.sparse_bsr_tensor(torch.tensor(crow_indices, dtype=torch.int64), ... torch.tensor(col_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(crow_indices=tensor([0, 1, 2]), col_indices=tensor([0, 1]), values=tensor([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, layout=torch.sparse_bsr)