ConvBn2d¶
- class torch.nn.intrinsic.qat.ConvBn2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None)[source]¶
A ConvBn2d module is a module fused from Conv2d and BatchNorm2d, attached with FakeQuantize modules for weight, used in quantization aware training.
We combined the interface of
torch.nn.Conv2d
andtorch.nn.BatchNorm2d
.Similar to
torch.nn.Conv2d
, with FakeQuantize modules initialized to default.- Variables:
freeze_bn –
weight_fake_quant – fake quant module for weight