LSTMCell¶
- class torch.nn.LSTMCell(input_size, hidden_size, bias=True, device=None, dtype=None)[source]¶
A long short-term memory (LSTM) cell.
where is the sigmoid function, and is the Hadamard product.
- Parameters:
- Inputs: input, (h_0, c_0)
input of shape (batch, input_size) or (input_size): tensor containing input features
h_0 of shape (batch, hidden_size) or (hidden_size): tensor containing the initial hidden state
c_0 of shape (batch, hidden_size) or (hidden_size): tensor containing the initial cell state
If (h_0, c_0) is not provided, both h_0 and c_0 default to zero.
- Outputs: (h_1, c_1)
h_1 of shape (batch, hidden_size) or (hidden_size): tensor containing the next hidden state
c_1 of shape (batch, hidden_size) or (hidden_size): tensor containing the next cell state
- Variables:
weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (4*hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (4*hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape (4*hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape (4*hidden_size)
Note
All the weights and biases are initialized from where
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
Examples:
>>> rnn = nn.LSTMCell(10, 20) # (input_size, hidden_size) >>> input = torch.randn(2, 3, 10) # (time_steps, batch, input_size) >>> hx = torch.randn(3, 20) # (batch, hidden_size) >>> cx = torch.randn(3, 20) >>> output = [] >>> for i in range(input.size()[0]): ... hx, cx = rnn(input[i], (hx, cx)) ... output.append(hx) >>> output = torch.stack(output, dim=0)