torch.lu_unpack¶
- torch.lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True, *, out=None)¶
Unpacks the LU decomposition returned by
lu_factor()
into the P, L, U matrices.See also
lu()
returns the matrices from the LU decomposition. Its gradient formula is more efficient than that of doinglu_factor()
followed bylu_unpack()
.- Parameters:
LU_data (Tensor) – the packed LU factorization data
LU_pivots (Tensor) – the packed LU factorization pivots
unpack_data (bool) – flag indicating if the data should be unpacked. If
False
, then the returnedL
andU
are empty tensors. Default:True
unpack_pivots (bool) – flag indicating if the pivots should be unpacked into a permutation matrix
P
. IfFalse
, then the returnedP
is an empty tensor. Default:True
- Keyword Arguments:
out (tuple, optional) – output tuple of three tensors. Ignored if None.
- Returns:
A namedtuple
(P, L, U)
Examples:
>>> A = torch.randn(2, 3, 3) >>> LU, pivots = torch.linalg.lu_factor(A) >>> P, L, U = torch.lu_unpack(LU, pivots) >>> # We can recover A from the factorization >>> A_ = P @ L @ U >>> torch.allclose(A, A_) True >>> # LU factorization of a rectangular matrix: >>> A = torch.randn(2, 3, 2) >>> LU, pivots = torch.linalg.lu_factor(A) >>> P, L, U = torch.lu_unpack(LU, pivots) >>> # P, L, U are the same as returned by linalg.lu >>> P_, L_, U_ = torch.linalg.lu(A) >>> torch.allclose(P, P_) and torch.allclose(L, L_) and torch.allclose(U, U_) True