torch.linalg.matrix_norm¶
- torch.linalg.matrix_norm(A, ord='fro', dim=(- 2, - 1), keepdim=False, *, dtype=None, out=None) Tensor ¶
Computes a matrix norm.
If
A
is complex valued, it computes the norm ofA
.abs()Support input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices: the norm will be computed over the dimensions specified by the 2-tuple
dim
and the other dimensions will be treated as batch dimensions. The output will have the same batch dimensions.ord
defines the matrix norm that is computed. The following norms are supported:ord
matrix norm
‘fro’ (default)
Frobenius norm
‘nuc’
nuclear norm
inf
max(sum(abs(x), dim=1))
-inf
min(sum(abs(x), dim=1))
1
max(sum(abs(x), dim=0))
-1
min(sum(abs(x), dim=0))
2
largest singular value
-2
smallest singular value
where inf refers to float(‘inf’), NumPy’s inf object, or any equivalent object.
- Parameters:
A (Tensor) – tensor with two or more dimensions. By default its shape is interpreted as (*, m, n) where * is zero or more batch dimensions, but this behavior can be controlled using
dim
.ord (int, inf, -inf, 'fro', 'nuc', optional) – order of norm. Default: ‘fro’
dim (Tuple[int, int], optional) – dimensions over which to compute the norm. Default: (-2, -1)
keepdim (bool, optional) – If set to True, the reduced dimensions are retained in the result as dimensions with size one. Default: False
- Keyword Arguments:
out (Tensor, optional) – output tensor. Ignored if None. Default: None.
dtype (
torch.dtype
, optional) – If specified, the input tensor is cast todtype
before performing the operation, and the returned tensor’s type will bedtype
. Default: None
- Returns:
A real-valued tensor, even when
A
is complex.
Examples:
>>> from torch import linalg as LA >>> A = torch.arange(9, dtype=torch.float).reshape(3, 3) >>> A tensor([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> LA.matrix_norm(A) tensor(14.2829) >>> LA.matrix_norm(A, ord=-1) tensor(9.) >>> B = A.expand(2, -1, -1) >>> B tensor([[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]], [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]) >>> LA.matrix_norm(B) tensor([14.2829, 14.2829]) >>> LA.matrix_norm(B, dim=(0, 2)) tensor([ 3.1623, 10.0000, 17.2627])