Source code for torch.nested
from typing import List, Optional
import torch
from torch._C import _add_docstr, _nested # type: ignore[attr-defined]
from torch import Tensor
from torch.types import _dtype as DType
from torch.types import _device as Device
__all__ = [
'to_padded_tensor',
'as_nested_tensor',
'nested_tensor',
]
# Nested Tensor constructor functions
# TODO: move these to pybind to accept numpy/nested lists as inputs in the future
[docs]def nested_tensor(tensor_list: List[Tensor], *, dtype: Optional[DType] = None, device: Optional[Device] = None,
requires_grad: Optional[bool] = False, pin_memory: Optional[bool] = False) -> Tensor:
r"""
Constructs a nested tensor with no autograd history (also known as a “leaf tensor”, see
:ref:`Autograd mechanics <autograd-mechanics>`) from :attr:`tensor_list` a list of tensors.
Args:
tensor_list (List[Tensor]): a list of tensors with the same ndim
Keyword arguments:
dtype (:class:`torch.dtype`, optional): the desired type of returned nested tensor.
Default: if None, same :class:`torch.dtype` as leftmost tensor in the list.
device (:class:`torch.device`, optional): the desired device of returned nested tensor.
Default: if None, same :class:`torch.device` as leftmost tensor in the list
requires_grad (bool, optional): If autograd should record operations on the
returned nested tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned nested tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
Example::
>>> a = torch.arange(3, dtype=torch.float, requires_grad=True)
>>> b = torch.arange(5, dtype=torch.float, requires_grad=True)
>>> nt = torch.nested.nested_tensor([a, b], requires_grad=True)
>>> nt.is_leaf
True
"""
if not isinstance(tensor_list, list) or any([not torch.is_tensor(t) for t in tensor_list]):
raise TypeError("nested_tensor(): Expected first argument to be a list of tensors ")
new_data = [t.detach() for t in tensor_list]
nt = torch._nested_tensor_from_tensor_list(new_data, dtype, None, device, pin_memory)
if (requires_grad):
nt.requires_grad_(requires_grad)
return nt
[docs]def as_nested_tensor(tensor_list: List[Tensor], dtype: Optional[DType] = None, device: Optional[Device] = None) -> Tensor:
r"""
Constructs a nested tensor preserving autograd history from :attr:`tensor_list` a list of tensors.
.. note::
Tensors within the list are always copied by this function due to current nested tensor semantics.
Args:
tensor_list (List[Tensor]): a list of tensors with the same ndim
Keyword arguments:
dtype (:class:`torch.dtype`, optional): the desired type of returned nested tensor.
Default: if None, same :class:`torch.dtype` as leftmost tensor in the list.
device (:class:`torch.device`, optional): the desired device of returned nested tensor.
Default: if None, same :class:`torch.device` as leftmost tensor in the list
Example::
>>> a = torch.arange(3, dtype=torch.float, requires_grad=True)
>>> b = torch.arange(5, dtype=torch.float, requires_grad=True)
>>> nt = torch.nested.as_nested_tensor([a, b])
>>> nt.is_leaf
False
>>> fake_grad = torch.nested_tensor([torch.ones_like(a), torch.zeros_like(b)])
>>> nt.backward(fake_grad)
>>> a.grad
tensor([1., 1., 1.])
>>> b.grad
tensor([0., 0., 0., 0., 0.])
"""
if not isinstance(tensor_list, list) or any([not torch.is_tensor(t) for t in tensor_list]):
raise TypeError("nested_tensor(): Expected first argument to be a list of tensors ")
return torch._nested_tensor_from_tensor_list(tensor_list, dtype, None, device, None)
# Note: This not only adds doc strings for the nested ops, but
# also connects the torch.nested Python namespace to the torch._C._nested builtins.
to_padded_tensor = _add_docstr(_nested.nested_to_padded_tensor,
r"""
to_padded_tensor(input, padding, output_size=None, out=None) -> Tensor
Returns a new (non-nested) Tensor by padding the :attr:`input` nested tensor.
The leading entries will be filled with the nested data,
while the trailing entries will be padded.
.. warning::
:func:`to_padded_tensor` always copies the underlying data,
since the nested and the non-nested tensors differ in memory layout.
Args:
padding (float): The padding value for the trailing entries.
Keyword args:
output_size (Tuple[int]): The size of the output tensor.
If given, it must be large enough to contain all nested data;
else, will infer by taking the max size of each nested sub-tensor along each dimension.
out (Tensor, optional): the output tensor.
Example::
>>> nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))])
nested_tensor([
tensor([[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276],
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995]]),
tensor([[-1.8546, -0.7194, -0.2918, -0.1846],
[ 0.2773, 0.8793, -0.5183, -0.6447],
[ 1.8009, 1.8468, -0.9832, -1.5272]])
])
>>> pt_infer = torch.nested.to_padded_tensor(nt, 0.0)
tensor([[[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276],
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]],
[[-1.8546, -0.7194, -0.2918, -0.1846, 0.0000],
[ 0.2773, 0.8793, -0.5183, -0.6447, 0.0000],
[ 1.8009, 1.8468, -0.9832, -1.5272, 0.0000]]])
>>> pt_large = torch.nested.to_padded_tensor(nt, 1.0, (2, 4, 6))
tensor([[[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276, 1.0000],
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995, 1.0000],
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],
[[-1.8546, -0.7194, -0.2918, -0.1846, 1.0000, 1.0000],
[ 0.2773, 0.8793, -0.5183, -0.6447, 1.0000, 1.0000],
[ 1.8009, 1.8468, -0.9832, -1.5272, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
>>> pt_small = torch.nested.to_padded_tensor(nt, 2.0, (2, 2, 2))
RuntimeError: Value in output_size is less than NestedTensor padded size. Truncation is not supported.
""")