Source code for torch.ao.quantization.fx.custom_config
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
from torch.ao.quantization import QConfigMapping
from torch.ao.quantization.backend_config import BackendConfig
from torch.ao.quantization.quant_type import QuantType, _quant_type_from_str, quant_type_to_str
__all__ = [
"ConvertCustomConfig",
"FuseCustomConfig",
"PrepareCustomConfig",
"StandaloneModuleConfigEntry",
]
# TODO: replace all usages with these constants
STANDALONE_MODULE_NAME_DICT_KEY = "standalone_module_name"
STANDALONE_MODULE_CLASS_DICT_KEY = "standalone_module_class"
FLOAT_TO_OBSERVED_DICT_KEY = "float_to_observed_custom_module_class"
OBSERVED_TO_QUANTIZED_DICT_KEY = "observed_to_quantized_custom_module_class"
NON_TRACEABLE_MODULE_NAME_DICT_KEY = "non_traceable_module_name"
NON_TRACEABLE_MODULE_CLASS_DICT_KEY = "non_traceable_module_class"
INPUT_QUANTIZED_INDEXES_DICT_KEY = "input_quantized_idxs"
OUTPUT_QUANTIZED_INDEXES_DICT_KEY = "output_quantized_idxs"
PRESERVED_ATTRIBUTES_DICT_KEY = "preserved_attributes"
[docs]@dataclass
class StandaloneModuleConfigEntry:
# qconfig_mapping for the prepare function called in the submodule,
# None means use qconfig from parent qconfig_mapping
qconfig_mapping: Optional[QConfigMapping]
example_inputs: Tuple[Any, ...]
prepare_custom_config: Optional[PrepareCustomConfig]
backend_config: Optional[BackendConfig]
[docs]class PrepareCustomConfig:
"""
Custom configuration for :func:`~torch.ao.quantization.quantize_fx.prepare_fx` and
:func:`~torch.ao.quantization.quantize_fx.prepare_qat_fx`.
Example usage::
prepare_custom_config = PrepareCustomConfig() \
.set_standalone_module_name("module1", qconfig_mapping, example_inputs, \
child_prepare_custom_config, backend_config) \
.set_standalone_module_class(MyStandaloneModule, qconfig_mapping, example_inputs, \
child_prepare_custom_config, backend_config) \
.set_float_to_observed_mapping(FloatCustomModule, ObservedCustomModule) \
.set_non_traceable_module_names(["module2", "module3"]) \
.set_non_traceable_module_classes([NonTraceableModule1, NonTraceableModule2]) \
.set_input_quantized_indexes([0]) \
.set_output_quantized_indexes([0]) \
.set_preserved_attributes(["attr1", "attr2"])
"""
def __init__(self):
self.standalone_module_names: Dict[str, StandaloneModuleConfigEntry] = {}
self.standalone_module_classes: Dict[Type, StandaloneModuleConfigEntry] = {}
self.float_to_observed_mapping: Dict[QuantType, Dict[Type, Type]] = {}
self.non_traceable_module_names: List[str] = []
self.non_traceable_module_classes: List[Type] = []
self.input_quantized_indexes: List[int] = []
self.output_quantized_indexes: List[int] = []
self.preserved_attributes: List[str] = []
[docs] def set_standalone_module_name(
self,
module_name: str,
qconfig_mapping: Optional[QConfigMapping],
example_inputs: Tuple[Any, ...],
prepare_custom_config: Optional[PrepareCustomConfig],
backend_config: Optional[BackendConfig]) -> PrepareCustomConfig:
"""
Set the configuration for running a standalone module identified by ``module_name``.
If ``qconfig_mapping`` is None, the parent ``qconfig_mapping`` will be used instead.
If ``prepare_custom_config`` is None, an empty ``PrepareCustomConfig`` will be used.
If ``backend_config`` is None, the parent ``backend_config`` will be used instead.
"""
self.standalone_module_names[module_name] = \
StandaloneModuleConfigEntry(qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
return self
[docs] def set_standalone_module_class(
self,
module_class: Type,
qconfig_mapping: Optional[QConfigMapping],
example_inputs: Tuple[Any, ...],
prepare_custom_config: Optional[PrepareCustomConfig],
backend_config: Optional[BackendConfig]) -> PrepareCustomConfig:
"""
Set the configuration for running a standalone module identified by ``module_class``.
If ``qconfig_mapping`` is None, the parent ``qconfig_mapping`` will be used instead.
If ``prepare_custom_config`` is None, an empty ``PrepareCustomConfig`` will be used.
If ``backend_config`` is None, the parent ``backend_config`` will be used instead.
"""
self.standalone_module_classes[module_class] = \
StandaloneModuleConfigEntry(qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
return self
[docs] def set_float_to_observed_mapping(
self,
float_class: Type,
observed_class: Type,
quant_type: QuantType = QuantType.STATIC) -> PrepareCustomConfig:
"""
Set the mapping from a custom float module class to a custom observed module class.
The observed module class must have a ``from_float`` class method that converts the float module class
to the observed module class. This is currently only supported for static quantization.
"""
if quant_type != QuantType.STATIC:
raise ValueError("set_float_to_observed_mapping is currently only supported for static quantization")
if quant_type not in self.float_to_observed_mapping:
self.float_to_observed_mapping[quant_type] = {}
self.float_to_observed_mapping[quant_type][float_class] = observed_class
return self
[docs] def set_non_traceable_module_names(self, module_names: List[str]) -> PrepareCustomConfig:
"""
Set the modules that are not symbolically traceable, identified by name.
"""
self.non_traceable_module_names = module_names
return self
[docs] def set_non_traceable_module_classes(self, module_classes: List[Type]) -> PrepareCustomConfig:
"""
Set the modules that are not symbolically traceable, identified by class.
"""
self.non_traceable_module_classes = module_classes
return self
[docs] def set_input_quantized_indexes(self, indexes: List[int]) -> PrepareCustomConfig:
"""
Set the indexes of the inputs of the graph that should be quantized.
Inputs are otherwise assumed to be in fp32 by default instead.
"""
self.input_quantized_indexes = indexes
return self
[docs] def set_output_quantized_indexes(self, indexes: List[int]) -> PrepareCustomConfig:
"""
Set the indexes of the outputs of the graph that should be quantized.
Outputs are otherwise assumed to be in fp32 by default instead.
"""
self.output_quantized_indexes = indexes
return self
[docs] def set_preserved_attributes(self, attributes: List[str]) -> PrepareCustomConfig:
"""
Set the names of the attributes that will persist in the graph module even if they are not used in
the model's ``forward`` method.
"""
self.preserved_attributes = attributes
return self
# TODO: remove this
[docs] @classmethod
def from_dict(cls, prepare_custom_config_dict: Dict[str, Any]) -> PrepareCustomConfig:
"""
Create a ``PrepareCustomConfig`` from a dictionary with the following items:
"standalone_module_name": a list of (module_name, qconfig_mapping, example_inputs,
child_prepare_custom_config, backend_config) tuples
"standalone_module_class" a list of (module_class, qconfig_mapping, example_inputs,
child_prepare_custom_config, backend_config) tuples
"float_to_observed_custom_module_class": a nested dictionary mapping from quantization
mode to an inner mapping from float module classes to observed module classes, e.g.
{"static": {FloatCustomModule: ObservedCustomModule}}
"non_traceable_module_name": a list of modules names that are not symbolically traceable
"non_traceable_module_class": a list of module classes that are not symbolically traceable
"input_quantized_idxs": a list of indexes of graph inputs that should be quantized
"output_quantized_idxs": a list of indexes of graph outputs that should be quantized
"preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
This function is primarily for backward compatibility and may be removed in the future.
"""
def _get_qconfig_mapping(obj: Any, dict_key: str) -> Optional[QConfigMapping]:
"""
Convert the given object into a QConfigMapping if possible, else throw an exception.
"""
if isinstance(obj, QConfigMapping) or obj is None:
return obj
if isinstance(obj, Dict):
return QConfigMapping.from_dict(obj)
raise ValueError("Expected QConfigMapping in prepare_custom_config_dict[\"%s\"], got '%s'" %
(dict_key, type(obj)))
def _get_prepare_custom_config(obj: Any, dict_key: str) -> Optional[PrepareCustomConfig]:
"""
Convert the given object into a PrepareCustomConfig if possible, else throw an exception.
"""
if isinstance(obj, PrepareCustomConfig) or obj is None:
return obj
if isinstance(obj, Dict):
return PrepareCustomConfig.from_dict(obj)
raise ValueError("Expected PrepareCustomConfig in prepare_custom_config_dict[\"%s\"], got '%s'" %
(dict_key, type(obj)))
def _get_backend_config(obj: Any, dict_key: str) -> Optional[BackendConfig]:
"""
Convert the given object into a BackendConfig if possible, else throw an exception.
"""
if isinstance(obj, BackendConfig) or obj is None:
return obj
if isinstance(obj, Dict):
return BackendConfig.from_dict(obj)
raise ValueError("Expected BackendConfig in prepare_custom_config_dict[\"%s\"], got '%s'" %
(dict_key, type(obj)))
conf = cls()
for (module_name, qconfig_dict, example_inputs, _prepare_custom_config_dict, backend_config_dict) in\
prepare_custom_config_dict.get(STANDALONE_MODULE_NAME_DICT_KEY, []):
qconfig_mapping = _get_qconfig_mapping(qconfig_dict, STANDALONE_MODULE_NAME_DICT_KEY)
prepare_custom_config = _get_prepare_custom_config(_prepare_custom_config_dict, STANDALONE_MODULE_NAME_DICT_KEY)
backend_config = _get_backend_config(backend_config_dict, STANDALONE_MODULE_NAME_DICT_KEY)
conf.set_standalone_module_name(
module_name, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
for (module_class, qconfig_dict, example_inputs, _prepare_custom_config_dict, backend_config_dict) in\
prepare_custom_config_dict.get(STANDALONE_MODULE_CLASS_DICT_KEY, []):
qconfig_mapping = _get_qconfig_mapping(qconfig_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
prepare_custom_config = _get_prepare_custom_config(_prepare_custom_config_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
backend_config = _get_backend_config(backend_config_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
conf.set_standalone_module_class(
module_class, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
for quant_type_name, custom_module_mapping in prepare_custom_config_dict.get(FLOAT_TO_OBSERVED_DICT_KEY, {}).items():
quant_type = _quant_type_from_str(quant_type_name)
for float_class, observed_class in custom_module_mapping.items():
conf.set_float_to_observed_mapping(float_class, observed_class, quant_type)
conf.set_non_traceable_module_names(prepare_custom_config_dict.get(NON_TRACEABLE_MODULE_NAME_DICT_KEY, []))
conf.set_non_traceable_module_classes(prepare_custom_config_dict.get(NON_TRACEABLE_MODULE_CLASS_DICT_KEY, []))
conf.set_input_quantized_indexes(prepare_custom_config_dict.get(INPUT_QUANTIZED_INDEXES_DICT_KEY, []))
conf.set_output_quantized_indexes(prepare_custom_config_dict.get(OUTPUT_QUANTIZED_INDEXES_DICT_KEY, []))
conf.set_preserved_attributes(prepare_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
return conf
[docs] def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``PrepareCustomConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.fx.custom_config.PrepareCustomConfig.from_dict`.
"""
def _make_tuple(key: Any, e: StandaloneModuleConfigEntry):
qconfig_dict = e.qconfig_mapping.to_dict() if e.qconfig_mapping else None
prepare_custom_config_dict = e.prepare_custom_config.to_dict() if e.prepare_custom_config else None
return (key, qconfig_dict, e.example_inputs, prepare_custom_config_dict, e.backend_config)
d: Dict[str, Any] = {}
for module_name, sm_config_entry in self.standalone_module_names.items():
if STANDALONE_MODULE_NAME_DICT_KEY not in d:
d[STANDALONE_MODULE_NAME_DICT_KEY] = []
d[STANDALONE_MODULE_NAME_DICT_KEY].append(_make_tuple(module_name, sm_config_entry))
for module_class, sm_config_entry in self.standalone_module_classes.items():
if STANDALONE_MODULE_CLASS_DICT_KEY not in d:
d[STANDALONE_MODULE_CLASS_DICT_KEY] = []
d[STANDALONE_MODULE_CLASS_DICT_KEY].append(_make_tuple(module_class, sm_config_entry))
for quant_type, float_to_observed_mapping in self.float_to_observed_mapping.items():
if FLOAT_TO_OBSERVED_DICT_KEY not in d:
d[FLOAT_TO_OBSERVED_DICT_KEY] = {}
d[FLOAT_TO_OBSERVED_DICT_KEY][quant_type_to_str(quant_type)] = float_to_observed_mapping
if len(self.non_traceable_module_names) > 0:
d[NON_TRACEABLE_MODULE_NAME_DICT_KEY] = self.non_traceable_module_names
if len(self.non_traceable_module_classes) > 0:
d[NON_TRACEABLE_MODULE_CLASS_DICT_KEY] = self.non_traceable_module_classes
if len(self.input_quantized_indexes) > 0:
d[INPUT_QUANTIZED_INDEXES_DICT_KEY] = self.input_quantized_indexes
if len(self.output_quantized_indexes) > 0:
d[OUTPUT_QUANTIZED_INDEXES_DICT_KEY] = self.output_quantized_indexes
if len(self.preserved_attributes) > 0:
d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
return d
[docs]class ConvertCustomConfig:
"""
Custom configuration for :func:`~torch.ao.quantization.quantize_fx.convert_fx`.
Example usage::
convert_custom_config = ConvertCustomConfig() \
.set_observed_to_quantized_mapping(ObservedCustomModule, QuantizedCustomModule) \
.set_preserved_attributes(["attr1", "attr2"])
"""
def __init__(self):
self.observed_to_quantized_mapping: Dict[QuantType, Dict[Type, Type]] = {}
self.preserved_attributes: List[str] = []
[docs] def set_observed_to_quantized_mapping(
self,
observed_class: Type,
quantized_class: Type,
quant_type: QuantType = QuantType.STATIC) -> ConvertCustomConfig:
"""
Set the mapping from a custom observed module class to a custom quantized module class.
The quantized module class must have a ``from_observed`` class method that converts the observed module class
to the quantized module class.
"""
if quant_type not in self.observed_to_quantized_mapping:
self.observed_to_quantized_mapping[quant_type] = {}
self.observed_to_quantized_mapping[quant_type][observed_class] = quantized_class
return self
[docs] def set_preserved_attributes(self, attributes: List[str]) -> ConvertCustomConfig:
"""
Set the names of the attributes that will persist in the graph module even if they are not used in
the model's ``forward`` method.
"""
self.preserved_attributes = attributes
return self
# TODO: remove this
[docs] @classmethod
def from_dict(cls, convert_custom_config_dict: Dict[str, Any]) -> ConvertCustomConfig:
"""
Create a ``ConvertCustomConfig`` from a dictionary with the following items:
"observed_to_quantized_custom_module_class": a nested dictionary mapping from quantization
mode to an inner mapping from observed module classes to quantized module classes, e.g.::
{
"static": {FloatCustomModule: ObservedCustomModule},
"dynamic": {FloatCustomModule: ObservedCustomModule},
"weight_only": {FloatCustomModule: ObservedCustomModule}
}
"preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
This function is primarily for backward compatibility and may be removed in the future.
"""
conf = cls()
for quant_type_name, custom_module_mapping in convert_custom_config_dict.get(OBSERVED_TO_QUANTIZED_DICT_KEY, {}).items():
quant_type = _quant_type_from_str(quant_type_name)
for observed_class, quantized_class in custom_module_mapping.items():
conf.set_observed_to_quantized_mapping(observed_class, quantized_class, quant_type)
conf.set_preserved_attributes(convert_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
return conf
[docs] def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``ConvertCustomConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig.from_dict`.
"""
d: Dict[str, Any] = {}
for quant_type, observed_to_quantized_mapping in self.observed_to_quantized_mapping.items():
if OBSERVED_TO_QUANTIZED_DICT_KEY not in d:
d[OBSERVED_TO_QUANTIZED_DICT_KEY] = {}
d[OBSERVED_TO_QUANTIZED_DICT_KEY][quant_type_to_str(quant_type)] = observed_to_quantized_mapping
if len(self.preserved_attributes) > 0:
d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
return d
[docs]class FuseCustomConfig:
"""
Custom configuration for :func:`~torch.ao.quantization.quantize_fx.fuse_fx`.
Example usage::
fuse_custom_config = FuseCustomConfig().set_preserved_attributes(["attr1", "attr2"])
"""
def __init__(self):
self.preserved_attributes: List[str] = []
[docs] def set_preserved_attributes(self, attributes: List[str]) -> FuseCustomConfig:
"""
Set the names of the attributes that will persist in the graph module even if they are not used in
the model's ``forward`` method.
"""
self.preserved_attributes = attributes
return self
# TODO: remove this
[docs] @classmethod
def from_dict(cls, fuse_custom_config_dict: Dict[str, Any]) -> FuseCustomConfig:
"""
Create a ``ConvertCustomConfig`` from a dictionary with the following items:
"preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
This function is primarily for backward compatibility and may be removed in the future.
"""
conf = cls()
conf.set_preserved_attributes(fuse_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
return conf
[docs] def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``FuseCustomConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig.from_dict`.
"""
d: Dict[str, Any] = {}
if len(self.preserved_attributes) > 0:
d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
return d