PrepareCustomConfig¶
- class torch.ao.quantization.fx.custom_config.PrepareCustomConfig[source]¶
Custom configuration for
prepare_fx()
andprepare_qat_fx()
.Example usage:
prepare_custom_config = PrepareCustomConfig() .set_standalone_module_name("module1", qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) .set_standalone_module_class(MyStandaloneModule, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) .set_float_to_observed_mapping(FloatCustomModule, ObservedCustomModule) .set_non_traceable_module_names(["module2", "module3"]) .set_non_traceable_module_classes([NonTraceableModule1, NonTraceableModule2]) .set_input_quantized_indexes([0]) .set_output_quantized_indexes([0]) .set_preserved_attributes(["attr1", "attr2"])
- classmethod from_dict(prepare_custom_config_dict)[source]¶
Create a
PrepareCustomConfig
from a dictionary with the following items:“standalone_module_name”: a list of (module_name, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) tuples
“standalone_module_class” a list of (module_class, qconfig_mapping, example_inputs, child_prepare_custom_config, backend_config) tuples
“float_to_observed_custom_module_class”: a nested dictionary mapping from quantization mode to an inner mapping from float module classes to observed module classes, e.g. {“static”: {FloatCustomModule: ObservedCustomModule}}
“non_traceable_module_name”: a list of modules names that are not symbolically traceable “non_traceable_module_class”: a list of module classes that are not symbolically traceable “input_quantized_idxs”: a list of indexes of graph inputs that should be quantized “output_quantized_idxs”: a list of indexes of graph outputs that should be quantized “preserved_attributes”: a list of attributes that persist even if they are not used in
forward
This function is primarily for backward compatibility and may be removed in the future.
- Return type
- set_float_to_observed_mapping(float_class, observed_class, quant_type=QuantType.STATIC)[source]¶
Set the mapping from a custom float module class to a custom observed module class.
The observed module class must have a
from_float
class method that converts the float module class to the observed module class. This is currently only supported for static quantization.- Return type
- set_input_quantized_indexes(indexes)[source]¶
Set the indexes of the inputs of the graph that should be quantized. Inputs are otherwise assumed to be in fp32 by default instead.
- Return type
- set_non_traceable_module_classes(module_classes)[source]¶
Set the modules that are not symbolically traceable, identified by class.
- Return type
- set_non_traceable_module_names(module_names)[source]¶
Set the modules that are not symbolically traceable, identified by name.
- Return type
- set_output_quantized_indexes(indexes)[source]¶
Set the indexes of the outputs of the graph that should be quantized. Outputs are otherwise assumed to be in fp32 by default instead.
- Return type
- set_preserved_attributes(attributes)[source]¶
Set the names of the attributes that will persist in the graph module even if they are not used in the model’s
forward
method.- Return type
- set_standalone_module_class(module_class, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)[source]¶
Set the configuration for running a standalone module identified by
module_class
.If
qconfig_mapping
is None, the parentqconfig_mapping
will be used instead. Ifprepare_custom_config
is None, an emptyPrepareCustomConfig
will be used. Ifbackend_config
is None, the parentbackend_config
will be used instead.- Return type
- set_standalone_module_name(module_name, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)[source]¶
Set the configuration for running a standalone module identified by
module_name
.If
qconfig_mapping
is None, the parentqconfig_mapping
will be used instead. Ifprepare_custom_config
is None, an emptyPrepareCustomConfig
will be used. Ifbackend_config
is None, the parentbackend_config
will be used instead.- Return type