Source code for torch.export.exported_program
import copy
import dataclasses
import functools
import types
import warnings
from collections import namedtuple
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
Union,
)
from torch.fx.immutable_collections import immutable_dict, immutable_list
if TYPE_CHECKING:
# Import the following modules during type checking to enable code intelligence features,
# such as auto-completion in tools like pylance, even when these modules are not explicitly
# imported in user code.
import sympy
from torch.utils._sympy.value_ranges import ValueRanges
import torch
import torch.utils._pytree as pytree
from torch.export._tree_utils import is_equivalent, reorder_kwargs
from torch.fx._compatibility import compatibility
from torch.fx.experimental.proxy_tensor import maybe_disable_fake_tensor_mode
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager
from .graph_signature import ( # noqa: F401
_sig_to_specs,
ArgumentSpec,
ConstantArgument,
CustomObjArgument,
ExportGraphSignature,
InputKind,
InputSpec,
OutputKind,
OutputSpec,
SymIntArgument,
TensorArgument,
TokenArgument,
)
__all__ = [
"ExportedProgram",
"ModuleCallEntry",
"ModuleCallSignature",
]
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
[docs]@dataclasses.dataclass
class ModuleCallSignature:
inputs: List[ArgumentSpec]
outputs: List[ArgumentSpec]
in_spec: pytree.TreeSpec
out_spec: pytree.TreeSpec
[docs]@dataclasses.dataclass
class ModuleCallEntry:
fqn: str
signature: Optional[ModuleCallSignature] = None
def _disable_prexisiting_fake_mode(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
with maybe_disable_fake_tensor_mode():
return fn(*args, **kwargs)
return wrapper
def _fx_collection_equivalence_fn(
spec1_type: Optional[type],
spec1_context: pytree.Context,
spec2_type: Optional[type],
spec2_context: pytree.Context,
) -> bool:
"""Treat containers and their immutable variants as the same type. Otherwise
compare as normal.
"""
if spec1_type is None or spec2_type is None:
return spec1_type is spec2_type and spec1_context == spec2_context
if issubclass(spec1_type, (dict, immutable_dict)) and issubclass(
spec2_type, (dict, immutable_dict)
):
return spec1_context == spec2_context
if issubclass(spec1_type, (list, immutable_list)) and issubclass(
spec2_type, (list, immutable_list)
):
return spec1_context == spec2_context
return spec1_type is spec2_type and spec1_context == spec2_context
[docs]class ExportedProgram:
"""
Package of a program from :func:`export`. It contains
an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
tensor values of all lifted parameters and buffers, and various metadata.
You can call an ExportedProgram like the original callable traced by
:func:`export` with the same calling convention.
To perform transformations on the graph, use ``.module`` property to access
an :class:`torch.fx.GraphModule`. You can then use
`FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
to rewrite the graph. Afterwards, you can simply use :func:`export`
again to construct a correct ExportedProgram.
"""
def __init__(
self,
root: Union[torch.nn.Module, Dict[str, Any]],
graph: torch.fx.Graph,
graph_signature: ExportGraphSignature,
state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
range_constraints: "Dict[sympy.Symbol, Any]",
module_call_graph: List[ModuleCallEntry],
example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
verifier: Optional[Type[Any]] = None, # TODO Change typing hint to Verifier.
tensor_constants: Optional[
Dict[str, torch.Tensor]
] = None, # TODO: deprecate this
constants: Optional[
Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]
] = None,
):
# Remove codegen related things from the graph. It should just be a flat graph.
graph._codegen = torch.fx.graph.CodeGen()
self._graph_module = _create_graph_module_for_export(root, graph)
if isinstance(root, torch.fx.GraphModule):
self._graph_module.meta.update(root.meta)
self._graph_signature: ExportGraphSignature = graph_signature
self._state_dict: Dict[str, Any] = state_dict
self._range_constraints: "Dict[sympy.Symbol, ValueRanges]" = range_constraints
assert module_call_graph is not None
self._module_call_graph: List[ModuleCallEntry] = module_call_graph
self._example_inputs = example_inputs
self._constants = tensor_constants or constants or {}
assert self._constants is not None
from torch._export.verifier import Verifier
if verifier is None:
verifier = Verifier
assert issubclass(verifier, Verifier)
self._verifier = verifier
# Validate should be always the last step of the constructor.
self.verifier().check(self)
@property
@compatibility(is_backward_compatible=False)
def graph_module(self):
return self._graph_module
@property
@compatibility(is_backward_compatible=False)
def graph(self):
return self.graph_module.graph
@property
@compatibility(is_backward_compatible=False)
def graph_signature(self):
return self._graph_signature
@property
@compatibility(is_backward_compatible=False)
def state_dict(self):
return self._state_dict
[docs] @compatibility(is_backward_compatible=False)
def parameters(self) -> Iterator[torch.nn.Parameter]:
"""
Returns an iterator over original module's parameters.
"""
for _, param in self.named_parameters():
yield param
[docs] @compatibility(is_backward_compatible=False)
def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
"""
Returns an iterator over original module parameters, yielding
both the name of the parameter as well as the parameter itself.
"""
for param_name in self.graph_signature.parameters:
yield param_name, self.state_dict[param_name]
[docs] @compatibility(is_backward_compatible=False)
def buffers(self) -> Iterator[torch.Tensor]:
"""
Returns an iterator over original module buffers.
"""
for _, buf in self.named_buffers():
yield buf
[docs] @compatibility(is_backward_compatible=False)
def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
"""
Returns an iterator over original module buffers, yielding
both the name of the buffer as well as the buffer itself.
"""
non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
for buffer_name in self.graph_signature.buffers:
if buffer_name in non_persistent_buffers:
yield buffer_name, self.constants[buffer_name]
else:
yield buffer_name, self.state_dict[buffer_name]
@property
@compatibility(is_backward_compatible=False)
def range_constraints(self):
return self._range_constraints
@property
@compatibility(is_backward_compatible=False)
def module_call_graph(self):
return self._module_call_graph
@property
@compatibility(is_backward_compatible=False)
def example_inputs(self):
return self._example_inputs
@property
@compatibility(is_backward_compatible=False)
def call_spec(self):
CallSpec = namedtuple("CallSpec", ["in_spec", "out_spec"])
if len(self.module_call_graph) == 0:
return CallSpec(in_spec=None, out_spec=None)
assert self.module_call_graph[0].fqn == ""
return CallSpec(
in_spec=self.module_call_graph[0].signature.in_spec,
out_spec=self.module_call_graph[0].signature.out_spec,
)
@property
@compatibility(is_backward_compatible=False)
def verifier(self) -> Any:
return self._verifier
@property
@compatibility(is_backward_compatible=False)
def dialect(self) -> str:
return self._verifier.dialect
@property
@compatibility(is_backward_compatible=False)
def tensor_constants(self):
return self._constants
@property
@compatibility(is_backward_compatible=False)
def constants(self):
return self._constants
def _get_flat_args_with_check(self, args, kwargs):
"""Flatten args, kwargs using pytree, then, check specs.
Args:
args: List[Any] original args passed to __call__
kwargs: Dict[str, Any] original kwargs passed to __call
Returns:
A tuple of (flat_args, received_spec)
flat_args is flattend args / kwargs
received_spec is the pytree spec produced while flattening the
tuple (args, kwargs)
"""
in_spec = self.call_spec.in_spec
if in_spec is not None:
kwargs = reorder_kwargs(kwargs, in_spec)
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
(args, kwargs)
) # type: ignore[possibly-undefined]
self._check_input_constraints(flat_args_with_path)
flat_args = tuple(x[1] for x in flat_args_with_path)
return flat_args, received_spec
def _graph_module_flat_inputs(self, args: Any, kwargs: Any) -> Any:
"""Transform args, kwargs of __call__ to args for graph_module.
self.graph_module takes stuff from state dict as inputs.
The invariant is for ep: ExportedProgram is
ep(args, kwargs) ==
ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
"""
in_spec = self.call_spec.in_spec
flat_args, received_spec = self._get_flat_args_with_check(args, kwargs)
if in_spec is not None and not is_equivalent(
received_spec, in_spec, _fx_collection_equivalence_fn
):
raise ValueError(
"Trying to flatten user inputs with exported input tree spec: \n"
f"{in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}"
)
additional_inputs = []
for input_ in self.graph_signature.input_specs:
if input_.kind == InputKind.USER_INPUT:
continue
elif input_.kind in (
InputKind.PARAMETER,
InputKind.BUFFER,
):
if input_.persistent is False:
# This is a non-persistent buffer, grab it from our
# constants instead of the state dict.
additional_inputs.append(self.constants[input_.target])
else:
additional_inputs.append(self.state_dict[input_.target])
elif input_.kind in (
InputKind.CONSTANT_TENSOR,
InputKind.CUSTOM_OBJ,
):
additional_inputs.append(self.constants[input_.target])
additional_inputs = tuple(additional_inputs)
# NOTE: calling convention is first params, then buffers, then args as user supplied them.
# See: torch/_functorch/aot_autograd.py#L1034
return additional_inputs + flat_args
def __call__(self, *args: Any, **kwargs: Any) -> Any:
raise RuntimeError(
"Unable to call ExportedProgram directly. "
"You should use `exported_program.module()` instead."
)
def _postprocess_graph_module_outputs(self, res, orig_args, orig_kwargs):
"""Process potential mutations to the input.
Because self.graph_module is functional, so mutations has to be written
back after execution of graph_module.
"""
import torch._export.error as error
flat_args, _ = self._get_flat_args_with_check(orig_args, orig_kwargs)
if self.call_spec.out_spec is not None:
buffer_mutation = self.graph_signature.buffers_to_mutate
user_input_mutation = self.graph_signature.user_inputs_to_mutate
num_mutated = len(buffer_mutation) + len(user_input_mutation)
mutated_values = res[:num_mutated]
# Exclude dependency token from final result.
assertion_dep_token = self.graph_signature.assertion_dep_token
if assertion_dep_token is not None:
assertion_dep_token_index = next(iter(assertion_dep_token.keys()))
res = res[:assertion_dep_token_index]
res = res[num_mutated:]
try:
res = pytree.tree_unflatten(res, self.call_spec.out_spec)
except Exception:
_, received_spec = pytree.tree_flatten(res)
raise error.InternalError( # noqa: TRY200
"Trying to flatten user outputs with exported output tree spec: \n"
f"{self.call_spec.out_spec}\n"
"but actually got outputs with tree spec of: \n"
f"{received_spec}"
)
finally:
user_inputs = [
spec
for spec in self.graph_signature.input_specs
if spec.kind == InputKind.USER_INPUT
]
for i, value in enumerate(mutated_values):
output_spec = self.graph_signature.output_specs[i]
if output_spec.kind == OutputKind.BUFFER_MUTATION:
assert output_spec.target is not None
self.state_dict[output_spec.target] = value
elif output_spec.kind == OutputKind.USER_INPUT_MUTATION:
assert output_spec.target is not None
index = next(
i
for i, spec in enumerate(user_inputs)
if spec.arg.name == output_spec.target
)
flat_args[index].copy_(value)
else:
raise AssertionError(f"Unexpected kind: {output_spec.kind}")
return res
def __str__(self) -> str:
graph_module = self.graph_module.print_readable(print_output=False).replace(
"\n", "\n "
)
string = (
"ExportedProgram:\n"
f" {graph_module}\n"
f"Graph signature: {self.graph_signature}\n"
f"Range constraints: {self.range_constraints}\n"
)
return string
[docs] def module(self) -> torch.nn.Module:
"""
Returns a self contained GraphModule with all the parameters/buffers inlined.
"""
from ._unlift import _unlift_exported_program_lifted_states
module = _unlift_exported_program_lifted_states(self)
def _train(self, mode: bool = True):
raise NotImplementedError("Calling train() is not supported yet.")
def _eval(self, mode: bool = True):
raise NotImplementedError("Calling eval() is not supported yet.")
module.train = types.MethodType(_train, module) # type: ignore[method-assign]
module.eval = types.MethodType(_eval, module) # type: ignore[method-assign]
return module
[docs] @_disable_prexisiting_fake_mode
def run_decompositions(
self, decomp_table: Optional[Dict[torch._ops.OperatorBase, Callable]] = None
) -> "ExportedProgram":
"""
Run a set of decompositions on the exported program and returns a new
exported program. By default we will run the Core ATen decompositions to
get operators in the
`Core ATen Operator Set <https://pytorch.org/docs/stable/torch.compiler_ir.html>`_.
For now, we do not decompose joint graphs.
"""
from torch._decomp import core_aten_decompositions
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_AddRuntimeAssertionsForInlineConstraintsPass,
)
from torch._export.passes.lift_constants_pass import (
ConstantAttrMap,
lift_constants_pass,
)
from torch._export.passes.replace_sym_size_ops_pass import (
_replace_sym_size_ops_pass,
)
from torch._functorch.aot_autograd import aot_export_module
def _get_placeholders(gm):
placeholders = []
for node in gm.graph.nodes:
if node.op != "placeholder":
break
placeholders.append(node)
return placeholders
decomp_table = decomp_table or core_aten_decompositions()
old_placeholders = _get_placeholders(self.graph_module)
fake_args = [node.meta["val"] for node in old_placeholders]
buffers_to_remove = [name for name, _ in self.graph_module.named_buffers()]
for name in buffers_to_remove:
delattr(self.graph_module, name)
# TODO(zhxhchen17) Return the new graph_signature directly.
from torch.export._trace import _ignore_backend_decomps
with _ignore_backend_decomps():
gm, graph_signature = aot_export_module(
self.graph_module,
fake_args,
decompositions=decomp_table,
trace_joint=False,
)
# Update the signatures with the new placeholder names in case they
# changed when calling aot_export
def update_arg(old_arg, new_ph):
if isinstance(old_arg, ConstantArgument):
return old_arg
elif isinstance(old_arg, TensorArgument):
return TensorArgument(name=new_ph.name)
elif isinstance(old_arg, SymIntArgument):
return SymIntArgument(name=new_ph.name)
raise RuntimeError(f"Type of old_arg not supported: {type(old_arg)}")
new_placeholders = _get_placeholders(gm)
new_outputs = list(gm.graph.nodes)[-1].args[0]
# To match the output target with correct input for input mutations
# need to find the old to new placeholder map
old_new_placeholder_map = {
spec.arg.name: new_placeholders[i].name
for i, spec in enumerate(self.graph_signature.input_specs)
if not isinstance(spec.arg, ConstantArgument)
}
input_specs = [
InputSpec(
spec.kind,
update_arg(spec.arg, new_placeholders[i]),
spec.target,
spec.persistent,
)
for i, spec in enumerate(self.graph_signature.input_specs)
]
output_specs = [
OutputSpec(
spec.kind,
update_arg(spec.arg, new_outputs[i]),
old_new_placeholder_map.get(spec.target, spec.target),
)
for i, spec in enumerate(self.graph_signature.output_specs)
]
assert len(new_placeholders) == len(old_placeholders)
new_graph_signature = ExportGraphSignature(
input_specs=input_specs, output_specs=output_specs
)
# NOTE: aot_export adds symint metadata for placeholders with int
# values; since these become specialized, we replace such metadata with
# the original values.
# Also, set the param/buffer metadata back to the placeholders.
for old_node, new_node in zip(old_placeholders, new_placeholders):
if not isinstance(old_node.meta["val"], torch.Tensor):
new_node.meta["val"] = old_node.meta["val"]
if (
new_node.target in new_graph_signature.inputs_to_parameters
or new_node.target in new_graph_signature.inputs_to_buffers
):
for k, v in old_node.meta.items():
new_node.meta[k] = v
# TODO unfortunately preserving graph-level metadata is not
# working well with aot_export. So we manually copy it.
# (The node-level meta is addressed above.)
gm.meta.update(self.graph_module.meta)
new_range_constraints = _get_updated_range_constraints(gm)
constants = lift_constants_pass(gm, new_graph_signature, ConstantAttrMap())
for k, v in constants.items():
assert k not in self.constants
self.constants[k] = v
_replace_sym_size_ops_pass(gm)
exported_program = ExportedProgram(
root=gm,
graph=gm.graph,
graph_signature=new_graph_signature,
state_dict=self.state_dict,
range_constraints=new_range_constraints,
module_call_graph=copy.deepcopy(self.module_call_graph),
example_inputs=self.example_inputs,
verifier=self.verifier,
constants=self.constants,
)
if len(new_range_constraints) > 0:
exported_program = exported_program._transform_do_not_use(
_AddRuntimeAssertionsForInlineConstraintsPass(new_range_constraints)
)
return exported_program
def _transform_do_not_use(self, *passes: PassType) -> "ExportedProgram":
pm = PassManager(list(passes))
# Since we abstractly run the passes, we need to disable backend decomp here
# again.
from torch.export._trace import _ignore_backend_decomps
with _ignore_backend_decomps():
res = pm(self.graph_module)
transformed_gm = res.graph_module if res is not None else self.graph_module
assert transformed_gm is not None
if transformed_gm is self.graph_module and not res.modified:
return self
# TODO(zhxchen17) Remove this.
def _get_updated_graph_signature(
old_signature: ExportGraphSignature,
new_gm: torch.fx.GraphModule,
) -> ExportGraphSignature:
"""
Update the graph signature's user_input/user_outputs.
"""
new_input_specs = []
for i, node in enumerate(new_gm.graph.nodes):
if node.op != "placeholder":
break
assert i < len(
old_signature.input_specs
), "Number of inputs changed after transformation"
old_input_spec = old_signature.input_specs[i]
arg = (
old_input_spec.arg
if isinstance(
old_input_spec.arg, (ConstantArgument, CustomObjArgument)
)
else type(old_input_spec.arg)(node.name)
)
new_input_specs.append(
InputSpec(
old_input_spec.kind,
arg,
old_input_spec.target,
old_input_spec.persistent,
)
)
output_node = list(new_gm.graph.nodes)[-1]
assert output_node.op == "output"
new_output_specs = []
for i, node in enumerate(output_node.args[0]):
assert i < len(
old_signature.output_specs
), "Number of outputs changed after transformation"
old_output_spec = old_signature.output_specs[i]
arg = (
old_output_spec.arg
if isinstance(
old_output_spec.arg, (ConstantArgument, CustomObjArgument)
)
else type(old_output_spec.arg)(node.name)
)
new_output_specs.append(
OutputSpec(old_output_spec.kind, arg, old_output_spec.target)
)
new_signature = ExportGraphSignature(
input_specs=new_input_specs, output_specs=new_output_specs
)
return new_signature
transformed_ep = ExportedProgram(
root=transformed_gm,
graph=transformed_gm.graph,
graph_signature=_get_updated_graph_signature(
self.graph_signature, transformed_gm
),
state_dict=self.state_dict,
range_constraints=_get_updated_range_constraints(transformed_gm),
module_call_graph=copy.deepcopy(self._module_call_graph),
example_inputs=self.example_inputs,
verifier=self.verifier,
constants=self.constants,
)
transformed_ep.graph_module.meta.update(self.graph_module.meta)
transformed_ep.graph_module.meta.update(res.graph_module.meta)
return transformed_ep
def _check_input_constraints(self, flat_args_with_path):
from torch._export.utils import _check_input_constraints_for_graph
placeholders = [p for p in self.graph.nodes if p.op == "placeholder"]
input_placeholders = [
p
for p, s in zip(placeholders, self.graph_signature.input_specs)
if s.kind == InputKind.USER_INPUT
]
_check_input_constraints_for_graph(
input_placeholders, flat_args_with_path, self.range_constraints
)
def _validate(self):
self.verifier().check(self)
# TODO(zhxchen17) Formalize this.
def _update(
self, graph_module, graph_signature, state_dict=None
) -> "ExportedProgram":
return ExportedProgram(
root=graph_module,
graph=graph_module.graph,
graph_signature=graph_signature,
state_dict=state_dict or self.state_dict,
range_constraints=copy.deepcopy(self.range_constraints),
module_call_graph=copy.deepcopy(self._module_call_graph),
example_inputs=self.example_inputs,
verifier=self.verifier,
tensor_constants=self.tensor_constants,
)
def _get_updated_range_constraints(
gm: torch.fx.GraphModule,
) -> "Dict[sympy.Symbol, Any]":
def get_shape_env(gm):
vals = [
node.meta["val"]
for node in gm.graph.nodes
if node.meta.get("val", None) is not None
]
from torch._guards import detect_fake_mode
fake_mode = detect_fake_mode(vals)
if fake_mode is not None:
return fake_mode.shape_env
for v in vals:
if isinstance(v, torch.SymInt):
return v.node.shape_env
shape_env = get_shape_env(gm)
if shape_env is None:
return {}
range_constraints = {
k: v
for k, v in shape_env.var_to_range.items()
if k not in shape_env.replacements
}
# Only when we have an unbacked symint, and it's used as constructor inputs,
# runtime_var_to_range will make a difference compated to var_to_range.
# e.g. [2, oo) -> [0, oo)
for k, v in shape_env.var_to_range.items():
if k not in shape_env.replacements:
range_constraints[k] = v
return range_constraints
def _create_graph_module_for_export(root, graph):
try:
gm = torch.fx.GraphModule(root, graph)
except SyntaxError:
# If custom objects stored in memory are being used in the graph,
# the generated python code will result in a syntax error on the custom
# object, since it is unable to parse the in-memory object. However
# we can still run the graph eagerly through torch.fx.Interpreter,
# so we will bypass this error.
warnings.warn(
"Unable to execute the generated python source code from "
"the graph. The graph module will no longer be directly callable, "
"but you can still run the ExportedProgram, and if needed, you can "
"run the graph module eagerly using torch.fx.Interpreter."
)
gm = torch.fx.GraphModule(root, torch.fx.Graph())
gm._graph = graph
return gm