Shortcuts

Source code for torch.ao.nn.intrinsic.modules.fused

import torch
from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d
from torch.nn.utils.parametrize import type_before_parametrizations

__all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d',
           'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d',
           'LinearBn1d', 'LinearLeakyReLU', 'LinearTanh', 'ConvAdd2d', 'ConvAddReLU2d']

# Used for identifying intrinsic modules used in quantization
class _FusedModule(torch.nn.Sequential):
    pass

[docs]class ConvReLU1d(_FusedModule): r"""This is a sequential container which calls the Conv1d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}' super().__init__(conv, relu)
[docs]class ConvReLU2d(_FusedModule): r"""This is a sequential container which calls the Conv2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}' super().__init__(conv, relu)
[docs]class ConvReLU3d(_FusedModule): r"""This is a sequential container which calls the Conv3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}' super().__init__(conv, relu)
[docs]class LinearReLU(_FusedModule): r"""This is a sequential container which calls the Linear and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, relu): assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type_before_parametrizations(linear), type_before_parametrizations(relu)) super().__init__(linear, relu)
[docs]class ConvBn1d(_FusedModule): r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}' super().__init__(conv, bn)
[docs]class ConvBn2d(_FusedModule): r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}' super().__init__(conv, bn)
[docs]class ConvBnReLU1d(_FusedModule): r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \ type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) super().__init__(conv, bn, relu)
[docs]class ConvBnReLU2d(_FusedModule): r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \ type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) super().__init__(conv, bn, relu)
[docs]class ConvBn3d(_FusedModule): r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \ f'Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}' super().__init__(conv, bn)
[docs]class ConvBnReLU3d(_FusedModule): r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \ type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) super().__init__(conv, bn, relu)
[docs]class BNReLU2d(_FusedModule): r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type_before_parametrizations(batch_norm), type_before_parametrizations(relu)) super().__init__(batch_norm, relu)
[docs]class BNReLU3d(_FusedModule): r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type_before_parametrizations(batch_norm), type_before_parametrizations(relu)) super().__init__(batch_norm, relu)
class LinearBn1d(_FusedModule): r"""This is a sequential container which calls the Linear and BatchNorm1d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, bn): assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \ f'Incorrect types for input modules{type_before_parametrizations(linear)}{type_before_parametrizations(bn)}' super().__init__(linear, bn) class LinearLeakyReLU(_FusedModule): r"""This is a sequential container which calls the Linear and LeakyReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, leaky_relu): assert type(linear) == Linear and type(leaky_relu) == torch.nn.LeakyReLU, \ f'Incorrect types for input modules{type(linear)}{type(leaky_relu)}' super().__init__(linear, leaky_relu) class LinearTanh(_FusedModule): r"""This is a sequential container which calls the Linear and Tanh modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, tanh): assert type(linear) == Linear and type(tanh) == torch.nn.Tanh, \ f'Incorrect types for input modules{type(linear)}{type(tanh)}' super().__init__(linear, tanh) class ConvAdd2d(_FusedModule): r"""This is a sequential container which calls the Conv2d modules with extra Add. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, add): super().__init__(conv) self.add = add def forward(self, x1, x2): return self.add(self[0](x1), x2) class ConvAddReLU2d(_FusedModule): r"""This is a sequential container which calls the Conv2d, add, Relu. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, add, relu): super().__init__(conv) self.add = add self.relu = relu def forward(self, x1, x2): return self.relu(self.add(self[0](x1), x2))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources