torch.nn.functional.pdist¶
- torch.nn.functional.pdist(input, p=2) Tensor ¶
Computes the p-norm distance between every pair of row vectors in the input. This is identical to the upper triangular portion, excluding the diagonal, of torch.norm(input[:, None] - input, dim=2, p=p). This function will be faster if the rows are contiguous.
If input has shape then the output will have shape .
This function is equivalent to
scipy.spatial.distance.pdist(input, 'minkowski', p=p)
if . When it is equivalent toscipy.spatial.distance.pdist(input, 'hamming') * M
. When , the closest scipy function isscipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())
.- Parameters
input – input tensor of shape .
p – p value for the p-norm distance to calculate between each vector pair .