Source code for torch.nn.utils.convert_parameters
import torch
from typing import Iterable, Optional
[docs]def parameters_to_vector(parameters: Iterable[torch.Tensor]) -> torch.Tensor:
r"""Convert parameters to one vector
Args:
parameters (Iterable[Tensor]): an iterator of Tensors that are the
parameters of a model.
Returns:
The parameters represented by a single vector
"""
# Flag for the device where the parameter is located
param_device = None
vec = []
for param in parameters:
# Ensure the parameters are located in the same device
param_device = _check_param_device(param, param_device)
vec.append(param.view(-1))
return torch.cat(vec)
[docs]def vector_to_parameters(vec: torch.Tensor, parameters: Iterable[torch.Tensor]) -> None:
r"""Convert one vector to the parameters
Args:
vec (Tensor): a single vector represents the parameters of a model.
parameters (Iterable[Tensor]): an iterator of Tensors that are the
parameters of a model.
"""
# Ensure vec of type Tensor
if not isinstance(vec, torch.Tensor):
raise TypeError(f'expected torch.Tensor, but got: {torch.typename(vec)}')
# Flag for the device where the parameter is located
param_device = None
# Pointer for slicing the vector for each parameter
pointer = 0
for param in parameters:
# Ensure the parameters are located in the same device
param_device = _check_param_device(param, param_device)
# The length of the parameter
num_param = param.numel()
# Slice the vector, reshape it, and replace the old data of the parameter
param.data = vec[pointer:pointer + num_param].view_as(param).data
# Increment the pointer
pointer += num_param
def _check_param_device(param: torch.Tensor, old_param_device: Optional[int]) -> int:
r"""This helper function is to check if the parameters are located
in the same device. Currently, the conversion between model parameters
and single vector form is not supported for multiple allocations,
e.g. parameters in different GPUs/PrivateUse1s, or mixture of CPU/GPU/PrivateUse1.
Args:
param ([Tensor]): a Tensor of a parameter of a model
old_param_device (int): the device where the first parameter of a
model is allocated.
Returns:
old_param_device (int): report device for the first time
"""
# Meet the first parameter
support_device_types = ["cuda", torch._C._get_privateuse1_backend_name()]
if old_param_device is None:
old_param_device = param.get_device() if param.device.type in support_device_types else -1
else:
warn = False
if param.device.type in support_device_types: # Check if in same GPU/PrivateUse1
warn = (param.get_device() != old_param_device)
else: # Check if in CPU
warn = (old_param_device != -1)
if warn:
raise TypeError('Found two parameters on different devices, '
'this is currently not supported.')
return old_param_device