Shortcuts

torch.signal.windows.general_hamming

torch.signal.windows.general_hamming(M, *, alpha=0.54, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source]

Computes the general Hamming window.

The general Hamming window is defined as follows:

wn=α(1α)cos(2πnM1)w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}

The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if M is even and sym is True.

Parameters:

M (int) – the length of the window. In other words, the number of points of the returned window.

Keyword Arguments:
  • alpha (float, optional) – the window coefficient. Default: 0.54.

  • sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Return type:

Tensor

Examples:

>>> # Generates a symmetric Hamming window with the general Hamming window.
>>> torch.signal.windows.general_hamming(10, sym=True)
tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

>>> # Generates a periodic Hann window with the general Hamming window.
>>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources