Shortcuts

ModuleList

class torch.nn.ModuleList(modules=None)[source]

Holds submodules in a list.

ModuleList can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by all Module methods.

Parameters:

modules (iterable, optional) – an iterable of modules to add

Example:

class MyModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x
append(module)[source]

Appends a given module to the end of the list.

Parameters:

module (nn.Module) – module to append

Return type:

ModuleList

extend(modules)[source]

Appends modules from a Python iterable to the end of the list.

Parameters:

modules (iterable) – iterable of modules to append

Return type:

ModuleList

insert(index, module)[source]

Insert a given module before a given index in the list.

Parameters:
  • index (int) – index to insert.

  • module (nn.Module) – module to insert

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources