Source code for torch.optim.adamw
import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt,
_stack_if_compiling, _capturable_doc, _differentiable_doc, _foreach_doc,
_fused_doc, _maximize_doc, _default_to_fused_or_foreach)
from typing import List, Optional
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
__all__ = ["AdamW", "adamw"]
[docs]class AdamW(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
*,
maximize: bool = False,
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
fused: Optional[bool] = None,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
amsgrad=amsgrad,
foreach=foreach,
maximize=maximize,
capturable=capturable,
differentiable=differentiable,
fused=fused,
)
super().__init__(params, defaults)
if fused:
if differentiable:
raise RuntimeError("`fused` does not support `differentiable`")
self._step_supports_amp_scaling = True
# TODO(crcrpar): [low prec params & their higher prec copy]
# Suppor AMP with FP16/BF16 model params which would need
# higher prec copy of params to do update math in higher prec to
# alleviate the loss of information.
if not all(
p.is_cuda and torch.is_floating_point(p)
for pg in self.param_groups for p in pg['params']
):
raise RuntimeError("`fused=True` requires all the params to be CUDA, floating point Tensor")
if foreach:
raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("amsgrad", False)
group.setdefault("maximize", False)
group.setdefault("foreach", None)
group.setdefault("capturable", False)
group.setdefault("differentiable", False)
group.setdefault("fused", None)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(float(s["step"]))
def _init_group(
self,
group,
params_with_grad,
grads,
amsgrad,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
):
for p in group["params"]:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("AdamW does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = (
torch.zeros((1,), dtype=torch.float, device=p.device)
if group["capturable"] or group["fused"]
else torch.tensor(0.0)
)
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
if amsgrad:
max_exp_avg_sqs.append(state["max_exp_avg_sq"])
state_steps.append(state["step"])
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
max_exp_avg_sqs = []
state_steps = []
amsgrad = group["amsgrad"]
beta1, beta2 = group["betas"]
self._init_group(
group,
params_with_grad,
grads,
amsgrad,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
)
adamw(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
eps=group["eps"],
maximize=group["maximize"],
foreach=group["foreach"],
capturable=group["capturable"],
differentiable=group["differentiable"],
fused=group["fused"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
)
return loss
AdamW.__doc__ = r"""Implements AdamW algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2
\text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)},
\: \epsilon \text{ (epsilon)} \\
&\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad},
\: \textit{maximize} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0
\text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
&\hspace{5mm}\textbf{if} \: amsgrad \\
&\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
\widehat{v_t}) \\
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
\big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_.
""" + r"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
amsgrad (bool, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
{maximize}
{foreach}
{capturable}
{differentiable}
{fused}
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
""".format(maximize=_maximize_doc,
foreach=_foreach_doc,
fused=_fused_doc,
capturable=_capturable_doc,
differentiable=_differentiable_doc)
def adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
fused: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
maximize: bool,
):
r"""Functional API that performs AdamW algorithm computation.
See :class:`~torch.optim.AdamW` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
# Respect when the user inputs False/True for foreach or fused. We only want to change
# the default when neither have been user-specified. Note that we default to foreach
# and pass False to use_fused. This is not a mistake--we want to give the fused impl
# bake-in time before making it the default, even if it is typically faster.
if fused is None and foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if fused is None:
fused = False
if foreach is None:
foreach = False
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if fused and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with fused optimizers")
if fused and not torch.jit.is_scripting():
func = _fused_adamw
elif foreach and not torch.jit.is_scripting():
func = _multi_tensor_adamw
else:
func = _single_tensor_adamw
func(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
eps=eps,
maximize=maximize,
capturable=capturable,
differentiable=differentiable,
grad_scale=grad_scale,
found_inf=found_inf,
)
def _single_tensor_adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
maximize: bool,
capturable: bool,
differentiable: bool,
):
assert grad_scale is None and found_inf is None
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
step_t = state_steps[i]
if capturable:
assert (
param.is_cuda and step_t.is_cuda
), "If capturable=True, params and state_steps must be CUDA tensors."
if torch.is_complex(param):
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_avg_sq = torch.view_as_real(exp_avg_sq)
param = torch.view_as_real(param)
# update step
step_t += 1
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if capturable or differentiable:
step = step_t
# 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor
# (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")
bias_correction1 = 1 - torch.pow(beta1, step)
bias_correction2 = 1 - torch.pow(beta2, step)
step_size = lr / bias_correction1
step_size_neg = step_size.neg()
bias_correction2_sqrt = bias_correction2.sqrt()
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
if differentiable:
max_exp_avg_sqs_i = max_exp_avg_sqs[i].clone()
else:
max_exp_avg_sqs_i = max_exp_avg_sqs[i]
max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sqs_i, exp_avg_sq))
# Uses the max. for normalizing running avg. of gradient
# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
denom = (
max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg)
).add_(eps / step_size_neg)
else:
denom = (
exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)
).add_(eps / step_size_neg)
param.addcdiv_(exp_avg, denom)
else:
step = _get_value(step_t)
bias_correction1 = 1 - beta1 ** step
bias_correction2 = 1 - beta2 ** step
step_size = lr / bias_correction1
bias_correction2_sqrt = _dispatch_sqrt(bias_correction2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
# Use the max. for normalizing running avg. of gradient
denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps)
else:
denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)
param.addcdiv_(exp_avg, denom, value=-step_size)
def _multi_tensor_adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
maximize: bool,
capturable: bool,
differentiable: bool,
):
if len(params) == 0:
return
if capturable:
assert all(
p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)
), "If capturable=True, params and state_steps must be CUDA tensors."
assert not differentiable, "_foreach ops don't support autograd"
assert grad_scale is None and found_inf is None
grouped_tensors = _group_tensors_by_device_and_dtype([
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps])
for (device_params, device_grads, device_exp_avgs, device_exp_avg_sqs,
device_max_exp_avg_sqs, device_state_steps) in grouped_tensors.values():
if maximize:
device_grads = torch._foreach_neg(tuple(device_grads)) # type: ignore[assignment]
device_grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in device_grads]
device_exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in device_exp_avgs]
device_exp_avg_sqs = [
torch.view_as_real(x) if torch.is_complex(x) else x for x in device_exp_avg_sqs
]
device_params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in device_params]
# update steps
torch._foreach_add_(device_state_steps, 1)
# Perform stepweight decay
torch._foreach_mul_(device_params, 1 - lr * weight_decay)
# Decay the first and second moment running average coefficient
torch._foreach_mul_(device_exp_avgs, beta1)
torch._foreach_add_(device_exp_avgs, device_grads, alpha=1 - beta1)
torch._foreach_mul_(device_exp_avg_sqs, beta2)
torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, 1 - beta2)
if capturable:
# TODO: use foreach_pow if/when foreach_pow is added
bias_correction1 = [torch.pow(beta1, step) for step in device_state_steps]
bias_correction2 = [torch.pow(beta2, step) for step in device_state_steps]
# foreach_sub doesn't allow a scalar as the first arg
torch._foreach_sub_(bias_correction1, 1)
torch._foreach_sub_(bias_correction2, 1)
torch._foreach_neg_(bias_correction1)
torch._foreach_neg_(bias_correction2)
# foreach_div doesn't allow a scalar as the first arg
step_size = torch._foreach_div(bias_correction1, lr)
torch._foreach_reciprocal_(step_size)
torch._foreach_neg_(step_size)
bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs)
# Use the max. for normalizing running avg. of gradient
max_exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
torch._foreach_div_(
max_exp_avg_sq_sqrt,
torch._foreach_mul(bias_correction2_sqrt, step_size),
)
eps_over_step_size = torch._foreach_div(step_size, eps)
torch._foreach_reciprocal_(eps_over_step_size)
denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps_over_step_size)
else:
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
torch._foreach_div_(
exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size)
)
eps_over_step_size = torch._foreach_div(step_size, eps)
torch._foreach_reciprocal_(eps_over_step_size)
denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)
torch._foreach_addcdiv_(device_params, device_exp_avgs, denom)
else:
bias_correction1 = [1 - beta1 ** _get_value(step) for step in device_state_steps]
bias_correction2 = [1 - beta2 ** _get_value(step) for step in device_state_steps]
step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1])
bias_correction2_sqrt = [_dispatch_sqrt(bc) for bc in bias_correction2]
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs)
# Use the max. for normalizing running avg. of gradient
max_exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction2_sqrt)
denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
else:
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
denom = torch._foreach_add(exp_avg_sq_sqrt, eps)
torch._foreach_addcdiv_(device_params, device_exp_avgs, denom, step_size)
def _fused_adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
maximize: bool,
capturable: bool, # Needed for consistency.
differentiable: bool,
) -> None:
if differentiable:
raise RuntimeError("_fused_adamw is not differentiable")
grad_scale_dict = {grad_scale.device: grad_scale} if grad_scale is not None else None
found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None
grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps])
for (device, dtype) in grouped_tensors:
(
device_params,
device_grads,
device_exp_avgs,
device_exp_avg_sqs,
device_max_exp_avg_sqs,
device_state_steps,
) = grouped_tensors[(device, dtype)]
device_grad_scale, device_found_inf = None, None
if grad_scale is not None:
if device not in grad_scale_dict:
grad_scale_dict[device] = grad_scale.to(device, non_blocking=True)
device_grad_scale = grad_scale_dict[device]
if found_inf is not None:
if found_inf not in found_inf_dict:
found_inf_dict[device] = found_inf.to(device, non_blocking=True)
device_found_inf = found_inf_dict[device]
torch._foreach_add_(device_state_steps, 1)
torch._fused_adamw_(
device_params,
device_grads,
device_exp_avgs,
device_exp_avg_sqs,
device_max_exp_avg_sqs,
device_state_steps,
amsgrad=amsgrad,
lr=lr,
beta1=beta1,
beta2=beta2,
weight_decay=weight_decay,
eps=eps,
maximize=maximize,
grad_scale=device_grad_scale,
found_inf=device_found_inf,
)
if device_found_inf is not None:
torch._foreach_sub_(device_state_steps, [device_found_inf] * len(device_state_steps))