torch.pow¶
-
torch.
pow
(input, exponent, *, out=None) → Tensor¶ Takes the power of each element in
input
withexponent
and returns a tensor with the result.exponent
can be either a singlefloat
number or a Tensor with the same number of elements asinput
.When
exponent
is a scalar value, the operation applied is:When
exponent
is a tensor, the operation applied is:When
exponent
is a tensor, the shapes ofinput
andexponent
must be broadcastable.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.])
-
torch.
pow
(self, exponent, *, out=None) → Tensor
self
is a scalarfloat
value, andexponent
is a tensor. The returned tensorout
is of the same shape asexponent
The operation applied is:
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.])