torch.cuda.jiterator._create_jit_fn¶
-
torch.cuda.jiterator.
_create_jit_fn
(code_string, **kwargs)[source]¶ Create a jiterator-generated cuda kernel for an elementwise op.
The code string has to be a valid CUDA function that describes the computation for a single element. The code string has to follow the c++ template pattern, as shown in the example below. This function will be inlined into elementwise kernel template, and compiled on the fly. Compiled kernel will be cached in memory, as well as local temp dir.
Jiterator-generated kernels accepts noncontiguous tensors, and supports boardcasting and type promotion.
- Parameters
code_string (string) – CUDA code string to be compiled by jiterator.
kwargs (Dict, optional) – Keyword arguments for generated function
Example
>>> code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x + alpha * y; }" >>> jitted_fn = create_jit_fn(code_string, alpha=1.0) >>> a = torch.rand(3, device='cuda') >>> b = torch.rand(3, device='cuda') >>> # invoke jitted function like a regular python function >>> result = jitted_fn(a, b, alpha=3.14)
Jiterator can be used together with python registration to override an operator’s cuda kernel
- Following example is overriding gelu’s cuda kernel with relu:
>>> code_string = "template <typename T> T my_gelu(T a) { return a > 0 ? a : 0; }" >>> my_gelu = create_jit_fn(code_string) >>> my_lib = torch.library.Library("aten", "IMPL") >>> my_lib.impl('aten::gelu', my_gelu, "CUDA") >>> # torch.nn.GELU and torch.nn.function.gelu are now overridden >>> a = torch.rand(3, device='cuda') >>> torch.allclose(torch.nn.functional.gelu(a), torch.nn.functional.relu(a))
Warning
This API is in beta and may change in future releases.
Warning
Jiterator only supports up to 8 tensor inputs
Warning
All input tensors must live in CUDA device