Shortcuts

Source code for torch.storage

import io

import torch
from ._utils import _type, _cuda
from torch.types import Storage
from typing import Any, TypeVar, Type, Union, cast
import copy
import collections
from functools import lru_cache
try:
    import numpy as np
    HAS_NUMPY = True
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]

T = TypeVar('T', bound='Union[_StorageBase, _TypedStorage]')
class _StorageBase(object):
    _cdata: Any
    is_sparse: bool = False
    is_sparse_csr: bool = False
    device: torch.device

    def __init__(self, *args, **kwargs): ...  # noqa: E704
    def __len__(self) -> int: ...  # noqa: E704
    def __getitem__(self, idx): ...  # noqa: E704
    def copy_(self, source: T, non_blocking: bool = None) -> T: ...  # noqa: E704
    def nbytes(self) -> int: ...  # noqa: E704

    def size(self) -> int:
        return self.nbytes()

    def type(self, dtype: str = None, non_blocking: bool = False) -> T: ...  # noqa: E704
    def cuda(self, device=None, non_blocking=False, **kwargs) -> T: ...  # noqa: E704
    def element_size(self) -> int: ...  # noqa: E704
    def get_device(self) -> int: ...  # noqa: E704
    def data_ptr(self) -> int: ...  # noqa: E704

    # Defined in torch/csrc/generic/StorageSharing.cpp
    def _share_filename_cpu_(self, *args, **kwargs): ...  # noqa: E704
    def _share_fd_cpu_(self, *args, **kwargs): ...  # noqa: E704
    @classmethod
    def _new_using_filename_cpu(cls: Type[T], size: int) -> T: ...  # noqa: E704
    @classmethod
    def _new_using_fd_cpu(cls: Type[T], size: int) -> T: ...  # noqa: E704
    @classmethod
    def from_buffer(cls, *args, **kwargs) -> T: ...  # noqa: E704
    @classmethod
    def _new_shared_filename_cpu(cls, manager, obj, size, *, device=None, dtype=None) -> T: ...  # noqa: E704
    @classmethod
    def _release_ipc_counter_cuda(cls, *args, **kwargs) -> T: ...  # noqa: E704
    @classmethod
    def _new_with_weak_ptr(cls, *args, **kwargs) -> T: ...  # noqa: E704
    def _shared_decref(self) -> T: ...  # noqa: E704
    def _write_file(self, *args, **kwargs): ...  # noqa: E704
    def resize_(self, size: int): ...  # noqa: E704
    def _weak_ref(self, *args, **kwargs) -> T: ...  # noqa: E704
    def is_pinned(self) -> bool: ...  # noqa: E704
    def _set_from_file(self, *args, **kwargs): ...  # noqa: E704
    def _set_cdata(self, *args, **kwargs): ...  # noqa: E704
    def _share_cuda_(self, *args, **kwargs): ...  # noqa: E704
    def is_shared(self) -> bool: ...  # noqa: E704
    @classmethod
    def _new_shared_cuda(cls, *args, **kwargs) -> T: ...  # noqa: E704
    def _shared_incref(self, *args, **kwargs): ...  # noqa: E704
    @classmethod
    def _free_weak_ref(cls, *args, **kwargs): ...  # noqa: E704
    @property
    def is_cuda(self): ...  # noqa: E704

    def __str__(self):
        data_str = ' ' + '\n '.join(str(self[i]) for i in range(self.size()))
        return data_str + (
            f'\n[{torch.typename(self)}(device={self.device}) '
            f'of size {len(self)}]')

    def __repr__(self):
        return str(self)

    def __iter__(self):
        return iter(map(lambda i: self[i], range(self.size())))

    def __copy__(self):
        return self.clone()

    def __deepcopy__(self, memo):
        memo = memo.setdefault('torch', {})
        if self._cdata in memo:
            return memo[self._cdata]
        new_storage = self.clone()
        memo[self._cdata] = new_storage
        return new_storage

    def __reduce__(self):
        b = io.BytesIO()
        torch.save(self, b, _use_new_zipfile_serialization=False)
        return (_load_from_bytes, (b.getvalue(),))

    def __sizeof__(self):
        return super(_StorageBase, self).__sizeof__() + self.size()

    def clone(self):
        """Returns a copy of this storage"""
        return type(self)(self.nbytes(), device=self.device).copy_(self)

    def tolist(self):
        """Returns a list containing the elements of this storage"""
        return list(self)

    def cpu(self):
        """Returns a CPU copy of this storage if it's not already on the CPU"""
        if self.device.type != 'cpu':
            return torch._UntypedStorage(self.size()).copy_(self, False)
        else:
            return self

    def _to(self, dtype):
        if not isinstance(dtype, torch.dtype):
            raise TypeError(f"Argument 'dtype' must be torch.dtype, not {type(dtype)}")
        storage = torch.tensor([], dtype=torch.uint8, device=self.device).set_(cast(Storage, self)).to(dtype).storage()
        if storage.data_ptr() == self.data_ptr():
            storage = storage.clone()
        return storage

    def double(self):
        """Casts this storage to double type"""
        return self._to(torch.double)

    def float(self):
        """Casts this storage to float type"""
        return self._to(torch.float)

    def half(self):
        """Casts this storage to half type"""
        return self._to(torch.half)

    def long(self):
        """Casts this storage to long type"""
        return self._to(torch.long)

    def int(self):
        """Casts this storage to int type"""
        return self._to(torch.int)

    def short(self):
        """Casts this storage to short type"""
        return self._to(torch.short)

    def char(self):
        """Casts this storage to char type"""
        return self._to(torch.int8)

    def byte(self):
        """Casts this storage to byte type"""
        return self._to(torch.uint8)

    def bool(self):
        """Casts this storage to bool type"""
        return self._to(torch.bool)

    def bfloat16(self):
        """Casts this storage to bfloat16 type"""
        return self._to(torch.bfloat16)

    def complex_double(self):
        """Casts this storage to complex double type"""
        return self._to(torch.cdouble)

    def complex_float(self):
        """Casts this storage to complex float type"""
        return self._to(torch.cfloat)

    def pin_memory(self):
        """Copies the storage to pinned memory, if it's not already pinned."""
        if self.is_cuda:
            raise TypeError(f"cannot pin '{self.type()}' only CPU memory can be pinned")
        import torch.cuda
        allocator = torch.cuda.memory._host_allocator()  # type: ignore[attr-defined]
        return type(self)(self.size(), allocator=allocator).copy_(self)

    def share_memory_(self):
        """Moves the storage to shared memory.

        This is a no-op for storages already in shared memory and for CUDA
        storages, which do not need to be moved for sharing across processes.
        Storages in shared memory cannot be resized.

        Returns: self
        """
        from torch.multiprocessing import get_sharing_strategy
        if self.is_cuda:
            pass  # CUDA doesn't use POSIX shared memory
        elif get_sharing_strategy() == 'file_system':
            self._share_filename_cpu_()
        else:
            self._share_fd_cpu_()
        return self

    @classmethod
    def _new_shared(cls, size, *, device='cpu'):
        """Creates a new storage in shared memory with the same data type"""
        from torch.multiprocessing import get_sharing_strategy
        device = torch.device(device)
        if device.type == 'cuda':
            return cls(size, device=device)
        elif get_sharing_strategy() == 'file_system':
            return cls._new_using_filename_cpu(size)
        else:
            return cls._new_using_fd_cpu(size)

    def _untyped(self):
        return self


class _UntypedStorage(torch._C.StorageBase, _StorageBase):
    pass

    @property
    def is_cuda(self):
        return self.device.type == 'cuda'

def _load_from_bytes(b):
    return torch.load(io.BytesIO(b))


_StorageBase.type = _type  # type: ignore[assignment]
_StorageBase.cuda = _cuda  # type: ignore[assignment]


@lru_cache(maxsize=None)
def _dtype_to_storage_type_map():
    # NOTE: We should no longer add dtypes to this map. This map
    # is only used for BC/FC with older PyTorch versions. Going forward,
    # new dtypes of _TypedStorage should not translate to a legacy
    # <type>Storage class. Instead, new dtypes of _TypedStorage should
    # be serialized as an _UntypedStorage paired with a torch.dtype
    return {
        torch.double: 'DoubleStorage',
        torch.float: 'FloatStorage',
        torch.half: 'HalfStorage',
        torch.long: 'LongStorage',
        torch.int: 'IntStorage',
        torch.int16: 'ShortStorage',
        torch.int8: 'CharStorage',
        torch.uint8: 'ByteStorage',
        torch.bool: 'BoolStorage',
        torch.bfloat16: 'BFloat16Storage',
        torch.cdouble: 'ComplexDoubleStorage',
        torch.cfloat: 'ComplexFloatStorage',
        torch.qint8: 'QInt8Storage',
        torch.qint32: 'QInt32Storage',
        torch.quint8: 'QUInt8Storage',
        torch.quint4x2: 'QUInt4x2Storage',
        torch.quint2x4: 'QUInt2x4Storage',
    }

@lru_cache(maxsize=None)
def _storage_type_to_dtype_map():
    dtype_map = {
        val: key for key, val in _dtype_to_storage_type_map().items()}
    return dtype_map

def _get_storage_from_sequence(sequence, dtype, device):
    if dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]:
        interpret_dtypes = {
            torch.quint8: torch.uint8,
            torch.quint4x2: torch.uint8,
            torch.quint2x4: torch.uint8,
            torch.qint32: torch.int32,
            torch.qint8: torch.int8
        }
        tmp_tensor = torch.tensor(
            sequence,
            dtype=interpret_dtypes[dtype],
            device=device)

    else:
        tmp_tensor = torch.tensor(
            sequence,
            dtype=dtype,
            device=device)

    return tmp_tensor.storage()._untyped()

def _isint(x):
    if HAS_NUMPY:
        return isinstance(x, (int, np.integer))
    else:
        return isinstance(x, int)

[docs]class _TypedStorage: is_sparse = False dtype: torch.dtype
[docs] def fill_(self, value): self[0:len(self)] = value return self
def __new__(cls, *args, wrap_storage=None, dtype=None, device=None): if cls == torch.storage._LegacyStorage: raise RuntimeError("Only child classes of _LegacyStorage can be instantiated") if cls == _TypedStorage: return super().__new__(cls) else: arg_error_msg = ( f'{cls}.__new__ received an invalid combination ' f'of arguments. Expected one of:\n' ' * no arguments\n' ' * (int size)\n' ' * (Sequence data)\n' ' * (*, _UntypedStorage wrap_storage)') if device is not None: raise RuntimeError( arg_error_msg + "\nKeyword argument 'device' cannot be specified") if dtype is not None: raise RuntimeError( arg_error_msg + "\nKeyword argument 'dtype' cannot be specified") if wrap_storage is None: if len(args) > 1: raise RuntimeError( arg_error_msg + "\nToo many positional arguments") if len(args) == 1 and not _isint(args[0]) and not isinstance(args[0], collections.abc.Sequence): raise TypeError( arg_error_msg + f"\nArgument type not recognized: {type(args[0])}") return _TypedStorage( *args, dtype=cls.dtype, device='cuda' if eval(cls.__module__) is torch.cuda else 'cpu') else: if len(args) != 0: raise RuntimeError( arg_error_msg + "\nNo positional arguments should be given when using " "'wrap_storage'") if not isinstance(wrap_storage, torch._UntypedStorage): raise TypeError( arg_error_msg + f"\nArgument 'wrap_storage' must be _UntypedStorage, but got {type(wrap_storage)}") cls_device = 'cuda' if cls.__module__ == 'torch.cuda' else 'cpu' if wrap_storage.device.type != cls_device: raise RuntimeError( arg_error_msg + f"\nDevice of 'wrap_storage' must be {cls_device}" f", but got {wrap_storage.device.type}") return _TypedStorage( *args, wrap_storage=wrap_storage, dtype=cls.dtype) def __init__(self, *args, device=None, dtype=None, wrap_storage=None): arg_error_msg = ( '_TypedStorage.__init__ received an invalid combination ' 'of arguments. Expected one of:\n' ' * (*, torch.device device, torch.dtype dtype)\n' ' * (int size, *, torch.device device, torch.dtype dtype)\n' ' * (Sequence data, *, torch.device device, torch.dtype dtype)\n' ' * (*, _UntypedStorage wrap_storage, torch.dtype dtype)') if wrap_storage is not None: if len(args) != 0: raise RuntimeError( arg_error_msg + "\nNo positional arguments should be given when using " "'wrap_storage'") if dtype is None: raise RuntimeError( arg_error_msg + "\nArgument 'dtype' must be specified") if not isinstance(dtype, torch.dtype): raise TypeError( arg_error_msg + f"\nArgument 'dtype' must be torch.dtype, not {type(dtype)}") if device is not None: raise RuntimeError( arg_error_msg + "\nArgument 'device' should not be specified when 'wrap_storage' is given") self.dtype = dtype if not isinstance(wrap_storage, torch._UntypedStorage): raise TypeError( arg_error_msg + f"\nArgument 'wrap_storage' must be _UntypedStorage, but got {type(wrap_storage)}") self._storage = wrap_storage else: self.dtype = torch.get_default_dtype() if dtype is None else dtype device = torch.device('cpu' if device is None else device) if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: if device.type == 'cuda': raise RuntimeError("Cannot create CUDA storage with quantized dtype") if len(args) == 0: self._storage = torch._UntypedStorage(device=device) elif len(args) == 1: if _isint(args[0]): self._storage = torch._UntypedStorage(int(args[0]) * self.element_size(), device=device) elif isinstance(args[0], collections.abc.Sequence): self._storage = _get_storage_from_sequence(args[0], self.dtype, device) else: raise TypeError( arg_error_msg + f"\nArgument type not recognized: {type(args[0])}") else: raise RuntimeError( arg_error_msg + "\nToo many positional arguments") @property def is_cuda(self): return self.device.type == 'cuda' def _untyped(self): return self._storage def _new_wrapped_storage(self, untyped_storage): assert type(untyped_storage) == torch._UntypedStorage if type(self) == _TypedStorage: return _TypedStorage(wrap_storage=untyped_storage, dtype=self.dtype) else: return type(self)(wrap_storage=untyped_storage) def __len__(self): return self._storage.nbytes() // self.element_size() def _maybe_wrap_index(self, idx, is_stop=False): if idx is None: if is_stop: return self.size() else: return 0 else: if type(idx) != int: raise TypeError( f"can't index a {type(self)} with {type(idx)}") if is_stop: if (idx > self.size()) or (idx < -self.size()): raise IndexError( f'index {idx} out of range for storage of size {self.size()}') if idx > 0: return idx else: return idx % self.size() else: if (idx >= self.size()) or (idx < -self.size()): raise IndexError( f'index {idx} out of range for storage of size {self.size()}') return idx % self.size() def __setitem__(self, idx, value): if not isinstance(idx, (int, slice)): raise RuntimeError(f"can't index a {type(self)} with {type(idx)}") if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: interpret_dtypes = { torch.quint8: torch.uint8, torch.quint4x2: torch.uint8, torch.quint2x4: torch.uint8, torch.qint32: torch.int32, torch.qint8: torch.int8 } tmp_dtype = interpret_dtypes[self.dtype] tmp_tensor = torch.tensor([], dtype=tmp_dtype, device=self.device).set_(_TypedStorage( wrap_storage=self._storage, dtype=tmp_dtype)) else: tmp_tensor = torch.tensor([], dtype=self.dtype, device=self.device).set_(self) tmp_tensor[idx] = value def __getitem__(self, idx): # NOTE: Before _TypedStorage existed, indexing with a slice used to be # possible for <type>Storage objects. However, it would return # a storage view, which would be a hassle to implement in _TypedStorage, # so it was disabled if isinstance(idx, slice): raise RuntimeError('slices are only supported in _UntypedStorage.__getitem__') elif not isinstance(idx, int): raise RuntimeError(f"can't index a {type(self)} with {type(idx)}") if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: interpret_dtypes = { torch.quint8: torch.uint8, torch.quint4x2: torch.uint8, torch.quint2x4: torch.uint8, torch.qint32: torch.int32, torch.qint8: torch.int8 } return _TypedStorage( wrap_storage=self._storage, dtype=interpret_dtypes[self.dtype])[idx] idx_wrapped = self._maybe_wrap_index(idx) tmp_tensor = torch.tensor([], dtype=self.dtype, device=self.device).set_(self) return tmp_tensor[idx_wrapped].item()
[docs] def copy_(self, source: T, non_blocking: bool = None): self._storage.copy_(source._untyped(), non_blocking) return self
[docs] def nbytes(self): return self._storage.nbytes()
[docs] def type(self, dtype: str = None, non_blocking: bool = False) -> Union[T, str]: if dtype is None: legacy_class = self._get_legacy_storage_class() if legacy_class is not None: return legacy_class.__module__ + '.' + legacy_class.__name__ return '.'.join([self.__module__, type(self).__name__]) else: return self._storage.type(dtype, non_blocking)
[docs] def cuda(self, device=None, non_blocking=False, **kwargs) -> T: if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: raise RuntimeError("Cannot create CUDA storage with quantized dtype") cuda_storage: torch._UntypedStorage = self._storage.cuda(device, non_blocking, **kwargs) return self._new_wrapped_storage(cuda_storage)
[docs] def element_size(self): return torch._utils._element_size(self.dtype)
[docs] def get_device(self) -> int: return self._storage.get_device()
def __str__(self): data_str = ' ' + '\n '.join(str(self[i]) for i in range(self.size())) return data_str + ( f'\n[{torch.typename(self)}(dtype={self.dtype}, ' f'device={self.device}) of size {len(self)}]') def __repr__(self): return str(self) def __iter__(self): return iter(map(lambda i: self[i], range(self.size()))) def __copy__(self): return self._new_wrapped_storage(copy.copy(self._storage)) def __deepcopy__(self, memo): return self._new_wrapped_storage(copy.deepcopy(self._storage, memo)) def __sizeof__(self): return super(_TypedStorage, self).__sizeof__() + self.nbytes()
[docs] def clone(self): """Returns a copy of this storage""" return self._new_wrapped_storage(self._storage.clone())
[docs] def tolist(self): """Returns a list containing the elements of this storage""" return list(self)
[docs] def cpu(self): """Returns a CPU copy of this storage if it's not already on the CPU""" return self._new_wrapped_storage(self._storage.cpu())
[docs] def pin_memory(self): """Coppies the storage to pinned memory, if it's not already pinned.""" return self._new_wrapped_storage(self._storage.pin_memory())
[docs] def share_memory_(self): """Moves the storage to shared memory. This is a no-op for storages already in shared memory and for CUDA storages, which do not need to be moved for sharing across processes. Storages in shared memory cannot be resized. Returns: self """ self._storage.share_memory_() return self
def _new_shared(self, size, *, device=None): """Creates a new storage in shared memory with the same data type""" if device is None: device = 'cpu' device = torch.device(device) untyped_storage = torch._UntypedStorage._new_shared(size * self.element_size(), device=device) return _TypedStorage( wrap_storage=untyped_storage, dtype=self.dtype) @property def _cdata(self): return self._storage._cdata @property def device(self): return self._storage.device
[docs] def size(self): return len(self)
[docs] def pickle_storage_type(self): try: return _dtype_to_storage_type_map()[self.dtype] except KeyError: raise KeyError(f'dtype {self.dtype} is not recognized')
def __reduce__(self): b = io.BytesIO() torch.save(self, b, _use_new_zipfile_serialization=False) return (_load_from_bytes, (b.getvalue(),))
[docs] def data_ptr(self): return self._storage.data_ptr()
[docs] def resize_(self, size): self._storage.resize_(size * self.element_size())
@classmethod def _free_weak_ref(cls, *args, **kwargs): return _UntypedStorage._free_weak_ref(*args, **kwargs) def _weak_ref(self, *args, **kwargs): return self._storage._weak_ref(*args, **kwargs)
[docs] @classmethod def from_buffer(cls, *args, dtype=None, device=None, **kwargs): if cls == _TypedStorage: dtype = torch.get_default_dtype() if dtype is None else dtype device = torch.device('cpu' if device is None else device) if device.type != 'cpu': raise RuntimeError(f'_TypedStorage.from_buffer: Not available for device {device.type}') untyped_storage: torch._UntypedStorage = torch._UntypedStorage.from_buffer(*args, dtype=dtype, **kwargs) else: if dtype is not None or len(args) == 5: raise RuntimeError(( "from_buffer: 'dtype' can only be specified in " "_UntypedStorage.from_buffer and _TypedStorage.from_buffer")) if device is not None: raise RuntimeError(( "from_buffer: 'device' can only be specified in " "_UntypedStorage.from_buffer and _TypedStorage.from_buffer")) dtype = cls.dtype untyped_storage = torch._UntypedStorage.from_buffer(*args, dtype=dtype, **kwargs) return _TypedStorage(wrap_storage=untyped_storage, dtype=dtype)
def _to(self, dtype): if not isinstance(dtype, torch.dtype): raise TypeError(f"Argument 'dtype' must be torch.dtype, not {type(dtype)}") storage = torch.tensor([], dtype=self.dtype, device=self.device).set_(self).to(dtype).storage() if storage.data_ptr() == self.data_ptr(): storage = storage.clone() return storage
[docs] def double(self): """Casts this storage to double type""" return self._to(torch.double)
[docs] def float(self): """Casts this storage to float type""" return self._to(torch.float)
[docs] def half(self): """Casts this storage to half type""" return self._to(torch.half)
[docs] def long(self): """Casts this storage to long type""" return self._to(torch.long)
[docs] def int(self): """Casts this storage to int type""" return self._to(torch.int)
[docs] def short(self): """Casts this storage to short type""" return self._to(torch.short)
[docs] def char(self): """Casts this storage to char type""" return self._to(torch.int8)
[docs] def byte(self): """Casts this storage to byte type""" return self._to(torch.uint8)
[docs] def bool(self): """Casts this storage to bool type""" return self._to(torch.bool)
[docs] def bfloat16(self): """Casts this storage to bfloat16 type""" return self._to(torch.bfloat16)
[docs] def complex_double(self): """Casts this storage to complex double type""" return self._to(torch.cdouble)
[docs] def complex_float(self): """Casts this storage to complex float type""" return self._to(torch.cfloat)
[docs] @classmethod def from_file(cls, filename, shared, size): """ from_file(filename, shared=False, size=0) -> Storage If `shared` is `True`, then memory is shared between all processes. All changes are written to the file. If `shared` is `False`, then the changes on the storage do not affect the file. `size` is the number of elements in the storage. If `shared` is `False`, then the file must contain at least `size * sizeof(Type)` bytes (`Type` is the type of storage). If `shared` is `True` the file will be created if needed. Args: filename (str): file name to map shared (bool): whether to share memory size (int): number of elements in the storage """ if cls == _TypedStorage: raise RuntimeError('from_file can only be called on derived classes') untyped_storage = eval(cls.__module__)._UntypedStorage.from_file( filename, shared, size * torch._utils._element_size(cls.dtype)) storage = cls(wrap_storage=untyped_storage) return storage
@classmethod def _expired(cls, *args, **kwargs): return eval(cls.__module__)._UntypedStorage._expired(*args, **kwargs)
[docs] def is_pinned(self): return self._storage.is_pinned()
def _write_file(self, *args, **kwargs): return self._storage._write_file(*args, **kwargs) def _set_from_file(self, *args, **kwargs): return self._storage._set_from_file(*args, **kwargs) def _set_cdata(self, *args, **kwargs): return self._storage._set_cdata(*args, **kwargs) def _share_cuda_(self, *args, **kwargs): return self._storage._share_cuda_(*args, **kwargs)
[docs] def is_shared(self): return self._storage.is_shared()
@classmethod def _new_shared_cuda(cls, *args, **kwargs): return torch._UntypedStorage._new_shared_cuda(*args, **kwargs) def _share_filename_cpu_(self, *args, **kwargs): manager_handle, storage_handle, size = self._storage._share_filename_cpu_(*args, **kwargs) return manager_handle, storage_handle, size // self.element_size() def _shared_decref(self): self._storage._shared_decref() return self @classmethod def _release_ipc_counter(cls, *args, device=None, **kwargs): return torch._UntypedStorage._release_ipc_counter_cuda(*args, **kwargs) def _shared_incref(self, *args, **kwargs): return self._storage._shared_incref(*args, **kwargs) def _share_fd_cpu_(self, *args, **kwargs): fd, size = self._storage._share_fd_cpu_(*args, **kwargs) return fd, size // self.element_size() def _get_legacy_storage_class(self): if self.dtype not in _dtype_to_storage_type_map(): return None storage_name = _dtype_to_storage_type_map()[self.dtype] if self.device.type not in ['cpu', 'cuda']: return None module = 'torch.' if self.device.type == 'cpu' else 'torch.cuda.' try: return eval(module + storage_name) except AttributeError: return None
_TypedStorage.type.__doc__ = _type.__doc__ _TypedStorage.cuda.__doc__ = _cuda.__doc__ class _LegacyStorageMeta(type): dtype: torch.dtype def __instancecheck__(cls, instance): if type(instance) == _TypedStorage: cls_device = 'cuda' if cls.__module__ == 'torch.cuda' else 'cpu' return (cls_device == instance.device.type) and (cls.dtype == instance.dtype) return False class _LegacyStorage(_TypedStorage, metaclass=_LegacyStorageMeta): @classmethod def _new_shared(cls, size): """Creates a new storage in shared memory with the same data type""" untyped_storage = torch._UntypedStorage._new_shared(size * cls().element_size()) return cls(wrap_storage=untyped_storage) @classmethod def _release_ipc_counter(cls, *args, **kwargs): return torch._UntypedStorage._release_ipc_counter_cuda(*args, **kwargs) @classmethod def _new_shared_filename(cls, manager, obj, size): bytes_size = size * torch._utils._element_size(cls.dtype) return cls(wrap_storage=torch._UntypedStorage._new_shared_filename_cpu(manager, obj, bytes_size)) def _get_dtype_from_pickle_storage_type(pickle_storage_type: str): try: return _storage_type_to_dtype_map()[pickle_storage_type] except KeyError: raise KeyError( f'pickle storage type "{pickle_storage_type}" is not recognized')

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources