Source code for torch.optim.nadam
import math
import torch
from torch import Tensor
from .optimizer import Optimizer
from typing import List, Optional
[docs]class NAdam(Optimizer):
r"""Implements NAdam algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
&\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}if \: \lambda \neq 0 \\
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\
&\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
& \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
foreach (bool, optional): whether foreach implementation of optimizer
is used (default: None)
.. _Incorporating Nesterov Momentum into Adam:
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
"""
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, momentum_decay=4e-3, foreach: Optional[bool] = None):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= momentum_decay:
raise ValueError("Invalid momentum_decay value: {}".format(momentum_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, momentum_decay=momentum_decay,
foreach=foreach)
super(NAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('foreach', None)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
if not step_is_tensor:
for s in state_values:
s['step'] = torch.tensor(float(s['step']))
mu_product_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu_product'])
if not mu_product_is_tensor:
for s in state_values:
s['mu_product'] = torch.tensor(s['mu_product'])
[docs] @torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
mu_products = []
state_steps = []
beta1, beta2 = group['betas']
for p in group['params']:
if p.grad is not None:
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError('NAdam does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
state['step'] = torch.tensor(0.)
state['mu_product'] = torch.tensor(1.)
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
mu_products.append(state['mu_product'])
state_steps.append(state['step'])
nadam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=group['lr'],
weight_decay=group['weight_decay'],
momentum_decay=group['momentum_decay'],
eps=group['eps'],
foreach=group['foreach'])
return loss
def nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: bool = None,
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float):
r"""Functional API that performs NAdam algorithm computation.
See :class:`~torch.optim.NAdam` for details.
"""
if not all([isinstance(t, torch.Tensor) for t in state_steps]):
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
if not all([isinstance(t, torch.Tensor) for t in mu_products]):
raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors")
if foreach is None:
# Placeholder for more complex foreach logic to be added when value is not set
foreach = False
if foreach and torch.jit.is_scripting():
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_nadam
else:
func = _single_tensor_nadam
func(params,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
momentum_decay=momentum_decay,
eps=eps)
def _single_tensor_nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float):
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
mu_product = mu_products[i]
step_t = state_steps[i]
# update step
step_t += 1
step = step_t.item()
bias_correction2 = 1 - beta2 ** step
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
# calculate the momentum cache \mu^{t} and \mu^{t+1}
mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay)))
mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))
# update mu_product
mu_product *= mu
mu_product_next = mu_product * mu * mu_next
# decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.div(bias_correction2).sqrt().add_(eps)
param.addcdiv_(grad, denom, value=-lr * (1. - mu) / (1. - mu_product.item()))
param.addcdiv_(exp_avg, denom, value=-lr * mu_next / (1. - mu_product_next.item()))
def _multi_tensor_nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float):
if len(params) == 0:
return
# update steps
torch._foreach_add_(state_steps, 1)
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
mus = [beta1 * (1. - 0.5 * (0.96 ** (step.item() * momentum_decay))) for step in state_steps]
mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((step.item() + 1) * momentum_decay)))
for step in state_steps]
# update mu_products
torch._foreach_mul_(mu_products, mus)
if weight_decay != 0:
torch._foreach_add_(grads, params, alpha=weight_decay)
# Decay the first and second moment running average coefficient
torch._foreach_mul_(exp_avgs, beta1)
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)
torch._foreach_mul_(exp_avg_sqs, beta2)
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
denom = torch._foreach_add(exp_avg_sq_sqrt, eps)
step_size_grads = [(lr * (1. - mu) / (1. - mu_product.item())) * -1
for mu_product, mu in zip(mu_products, mus)]
step_size_expavg = [(lr * mu_next / (1. - mu_product.item() * mu_next)) * -1
for mu_product, mu_next in zip(mu_products, mu_nexts)]
torch._foreach_addcdiv_(params, grads, denom, step_size_grads)
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size_expavg)