Shortcuts

Source code for torch.distributed.autograd


import sys
import torch


def is_available():
    return hasattr(torch._C, "_dist_autograd_init")


if is_available() and not torch._C._dist_autograd_init():
    raise RuntimeError("Failed to initialize torch.distributed.autograd")

if is_available():
    from torch._C._distributed_autograd import (
        get_gradients,
        backward,
        _init,
        _new_context,
        _release_context,
        _get_max_id,
        _is_valid_context,
        _retrieve_context,
        _current_context,
        _get_debug_info,
        DistAutogradContext,
    )

[docs]class context(object): ''' Context object to wrap forward and backward passes when using distributed autograd. The ``context_id`` generated in the ``with`` statement is required to uniquely identify a distributed backward pass on all workers. Each worker stores metadata associated with this ``context_id``, which is required to correctly execute a distributed autograd pass. Example:: >>> import torch.distributed.autograd as dist_autograd >>> with dist_autograd.context() as context_id: >>> t1 = torch.rand((3, 3), requires_grad=True) >>> t2 = torch.rand((3, 3), requires_grad=True) >>> loss = rpc.rpc_sync("worker1", torch.add, args=(t1, t2)).sum() >>> dist_autograd.backward(context_id, [loss]) ''' def __enter__(self): self.autograd_context = _new_context() return self.autograd_context._context_id() def __exit__(self, type, value, traceback): _release_context(self.autograd_context._context_id())

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources