Shortcuts

UpsamplingBilinear2d

class torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None)[source]

Applies a 2D bilinear upsampling to an input signal composed of several input channels.

To specify the scale, it takes either the size or the scale_factor as it’s constructor argument.

When size is given, it is the output size of the image (h, w).

Parameters
  • size (int or Tuple[int, int], optional) – output spatial sizes

  • scale_factor (float or Tuple[float, float], optional) – multiplier for spatial size.

Warning

This class is deprecated in favor of interpolate(). It is equivalent to nn.functional.interpolate(..., mode='bilinear', align_corners=True).

Shape:
  • Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in})

  • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) where

Hout=Hin×scale_factorH_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
Wout=Win×scale_factorW_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor

Examples:

>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1.,  2.],
          [ 3.,  4.]]]])

>>> m = nn.UpsamplingBilinear2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1.0000,  1.3333,  1.6667,  2.0000],
          [ 1.6667,  2.0000,  2.3333,  2.6667],
          [ 2.3333,  2.6667,  3.0000,  3.3333],
          [ 3.0000,  3.3333,  3.6667,  4.0000]]]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources