Shortcuts

Source code for torch.optim.adamax

import torch
from . import _functional as F
from .optimizer import Optimizer


[docs]class Adamax(Optimizer): r"""Implements Adamax algorithm (a variant of Adam based on infinity norm). .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{13mm} \epsilon \text{ (epsilon)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 """ def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Adamax, self).__init__(params, defaults)
[docs] @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_infs = [] state_steps = [] beta1, beta2 = group['betas'] eps = group['eps'] lr = group['lr'] weight_decay = group['weight_decay'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('Adamax does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) state['exp_inf'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) exp_infs.append(state['exp_inf']) state['step'] += 1 state_steps.append(state['step']) F.adamax(params_with_grad, grads, exp_avgs, exp_infs, state_steps, eps=eps, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay) return loss

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources