Shortcuts

Source code for torch.cuda.amp.autocast_mode

import torch
import functools
import collections
try:
    import numpy as np
    HAS_NUMPY = True
except ModuleNotFoundError:
    HAS_NUMPY = False
from torch._six import string_classes

[docs]class autocast(torch.autocast_mode.autocast): r""" See :class:`torch.autocast`. ``torch.cuda.amp.autocast(args...)`` is equivalent to ``torch.autocast("cuda", args...)`` """ def __init__(self, enabled=True, dtype=torch.float16, cache_enabled=True): super().__init__("cuda", enabled=enabled, dtype=dtype, cache_enabled=cache_enabled)
# Casts Tensors and containers of Tensors. Special-cases passthroughs for strings and np.ndarrays, which # may be falsely detected as "Iterables." def _cast(value, dtype): if isinstance(value, torch.Tensor): is_eligible = (value.is_floating_point() and value.is_cuda and (value.dtype is not torch.float64)) return value.to(dtype) if is_eligible else value elif isinstance(value, string_classes): return value elif HAS_NUMPY and isinstance(value, np.ndarray): return value elif isinstance(value, collections.abc.Mapping): return {_cast(k, dtype): _cast(v, dtype) for k, v in value.items()} elif isinstance(value, collections.abc.Iterable): iterable = map(lambda v: _cast(v, dtype), value) if isinstance(value, list) or isinstance(value, tuple): return type(value)(iterable) else: return iterable else: return value # custom_fwd is a decorator that may or may not be used with arguments, following # https://github.com/dabeaz/python-cookbook/tree/master/src/9/defining_a_decorator_that_takes_an_optional_argument. # this works: # @custom_fwd # def forward(...): # this also works: # @custom_fwd(cast_inputs=torch.float) # def forward(...): # TODO: when python 2 support is dropped, change the signature to # def custom_fwd(fwd=None, *, cast_inputs=None) with internal changes following the link above.
[docs]def custom_fwd(fwd=None, **kwargs): """ Helper decorator for ``forward`` methods of custom autograd functions (subclasses of :class:`torch.autograd.Function`). See the :ref:`example page<amp-custom-examples>` for more detail. Args: cast_inputs (:class:`torch.dtype` or None, optional, default=None): If not ``None``, when ``forward`` runs in an autocast-enabled region, casts incoming floating-point CUDA Tensors to the target dtype (non-floating-point Tensors are not affected), then executes ``forward`` with autocast disabled. If ``None``, ``forward``'s internal ops execute with the current autocast state. .. note:: If the decorated ``forward`` is called outside an autocast-enabled region, :func:`custom_fwd<custom_fwd>` is a no-op and ``cast_inputs`` has no effect. """ if fwd is None: if len(kwargs) == 0: cast_inputs = None else: assert len(kwargs) == 1 cast_inputs = kwargs["cast_inputs"] return functools.partial(custom_fwd, cast_inputs=cast_inputs) if len(kwargs) == 0: cast_inputs = None else: assert len(kwargs) == 1 cast_inputs = kwargs["cast_inputs"] @functools.wraps(fwd) def decorate_fwd(*args, **kwargs): if cast_inputs is None: args[0]._fwd_used_autocast = torch.is_autocast_enabled() return fwd(*args, **kwargs) else: autocast_context = torch.is_autocast_enabled() args[0]._fwd_used_autocast = False if autocast_context: with autocast(enabled=False): return fwd(*_cast(args, cast_inputs), **_cast(kwargs, cast_inputs)) else: return fwd(*args, **kwargs) return decorate_fwd
# Autograd ensures incoming gradients are the same type as forward outputs. Allowing a separate # cast_inputs argument on custom_bwd is unnecessary and could cause errors if it doesn't match # cast_inputs supplied to custom_fwd.
[docs]def custom_bwd(bwd): """ Helper decorator for backward methods of custom autograd functions (subclasses of :class:`torch.autograd.Function`). Ensures that ``backward`` executes with the same autocast state as ``forward``. See the :ref:`example page<amp-custom-examples>` for more detail. """ @functools.wraps(bwd) def decorate_bwd(*args, **kwargs): with autocast(args[0]._fwd_used_autocast): return bwd(*args, **kwargs) return decorate_bwd

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources